How Chiang Mai’s Wastewater Utility is building Capacity on sustainable and innovative Solutions to reduce its Carbon Footprint

In the city of Chiang Mai, the WaCCliM project supports the Wastewater Management
Authority (WMA) in assessing opportunities to reduce its carbon footprint. A baseline
study identified the leaks of untreated wastewater, caused by fractured pipes in the
wastewater collection system, as the main source of greenhouse gas (GHG) emissions
in Chiang Mai. A large amount of untreated wastewater is flowing directly into the
public canal. Because of this, the city is producing significant amounts of methane
(CH4) and nitrous oxide (N2O), both gases with a larger global warming potential than
carbon dioxide (CO2). The emissions from direct discharge of untreated wastewater
account for 579,900 kg CO2 per year in the city.
The cooperation between WaCCliM and the WMA in Thailand has raised the
local awareness for the challenges in the wastewater sector and the need for
improvements in the urban water management in order to achieve resilient water
utilities. Therefore, knowledge transfer and capacity building are necessary for longterm
success and continuous progress.

ADVANCED CONTROL OF A WATER SUPPLY SYSTEM: A CASE STUDY

In this paper, a case study of the implementation of advanced control software is presented, to control both the production flow, using an adaptive demand forecasting model, and the pump pressure by applying dynamic pressure control.

Towards A New Decision Support System for Design, Management and Operation of Wastewater Treatment Plants for the Reduction of Greenhouse Gases Emission

This paper presents the development of an ongoing research project aiming at setting-up an innovative mathematical model platform for the design and management of WWTPs. The final goal of the project by means of this platform is to minimize the environmental impact of WWTPs through their optimization in terms of energy consumptions and emissions, which can be regarded as discharged pollutants, sludge and GHGs.

Pressure-driven demand and leakage simulation for water distribution networks

A novel steady-state network simulation model that fully integrates, into a classical hydraulic representation, pressure-driven demand and leakage at the pipe level is developed and presented here. After presenting a brief literature review about leakage modelling, the importance of a more realistic simulation model allowing for leakage analysis is demonstrated. Then, the algorithm is tested from a numerical standpoint and subjected to a convergence analysis. These analyses are performed on a case study involving two networks derived from real systems. Experimentally observed convergence/error statistics demonstrate the high robustness of the proposed pressure-driven demand and leakage simulation model.

Biogas Wastewater Assessment Technology Tool (BioWATT)

The purpose of BioWATT is to provide a quick and preliminary assessment of wastewater-to-energy projects.Based on as little as two inputs provided by the user (average hydraulic load and average inflow BOD5 concentration).

The Roadmap to a Low-Carbon Urban Water Utility

An international guide to the WaCCliM approach

The Roadmap to a Low-Carbon Urban Water Utility presents utility managers with an approach to address their most pressing challenges, while reducing carbon emissions through
measures that either have a return on investment through energy or water savings, or that correspond to planned investments as part of the asset management plan to maintain or improve their services. Utilities adopting this approach are contributing to a carbon-neutral future, by instigating a change of mind-set, not only in urban water management but also by inspiring all other urban services through sharing the risks and the urgency to act to avoid aggravated impacts of climate change, of which water utilities are among the first victims: water scarcity, flooding and deteriorated water quality

Separating sewage from rainwater in Vancouver

Vancouver is working toward the Province of BC’s environmental goal to eliminate sewage overflows by 2050. As the City replaces combined sewer systems with separated sewer systems, properties will also need to have separated sewer systems.There are two sewer separation programs running concurrently in the City. The overall sewer mains are being separated so that storm drains carry stormwater runoff separately from other wastewater.

Water Well Rehabilitation and Reconstruction

This is the first professional’s guide to every aspect of pollution control for all types of water bodies. From at-the-source prevention to technical treatment solutions, the Water QualityControl Handbook brings readers expert guidance on assessing,controlling, eliminating, and remediating the many factors that contribute to water pollution.

Frequency pressure regulation in water supply systems

In water supply systems, pressure management in most cases is proven to be the most cost-effective activity related to water loss control. As an advanced method of pressure control, it is possible to use variable frequency drives for centrifugal pump control. Pressure regulation can be performed with constant pressure or with proportional pressure control. The application of proportional pressure control is particularly applicable in water supply systems as the operating pump performance is constantly adapting the pressure to the actual demand. Along with lower leakage losses, it also results in lower energy consumption and the elimination of non-stationary phenomena, thereby extending the pump lifetime. Therefore, the paper presents a theoretical discussion of the proportional pressure control. Possible savings are shown on the numerical example of water supply system of the city of Velika Gorica.

Variable Speed Drive (VSD) for Irrigation Pumping

Pumping water for irrigation can be a major expense for irrigated farms. In 2003 more than 500,000 pumps were used for irrigation, and the total estimated energy cost nationwide was over 15.5 billion dollars. Improving the efficiency of irrigation pumps has many benefits, including improving the profitability of the irrigated farm.
When a single pump is required to operate over a range of flow rates and pressures, standard procedure is to design the pump to meet the greatest output demand of both flow and pressure. For this reason, pumps are often oversized and they will be operating inefficiently over a range of duties. This common situation presents an opportunity to reduce energy requirements by using control methods such as a variable speed drive.

Assess your utility’s carbon footprint
X Close

Assess your utility’s energy performance and GHG emissions

Assess my system