Recycling and Reuse of Treated Wastewater in Urban India

The document focuses on identifying the economic, financial and environmental benefits of wastewater recycling from the perspective of public spending. Also provides information on the evolution and current practices of wastewater recycling internationally and the international and national regulatory and policy frameworks that guide wastewater recycling. It presents possible strategies for city and state planners and policy makers to initiate the discourse on wastewater recycling and reuse.

Biogas valorization and efficient energy management – Best practices for improved sludge digestion

This review covers state-of-the-art technologies for advanced anaerobic digestion of municipal sewage sludge. It is based on an extensive review of literature and available data, focussing on processes which have been realized in full-scale plants. The review includes information on single-stage mesophilic digestion, thermophilic digestion, temperature-phased digestion, high-load digestion and other process modifications, as well as mechanical, thermal, chemical, and biological disintegration methods. All processes are described with a set of key performance indicators such as degradation rate of volatile solids, biogas yield, return load, effects on dewatering, and capital costs.

Water reuse and reclamation: a contribution to energy efficiency in the water cycle

Water and energy are two of the most important resources of the 21st century. Water is required to supply energy and, at the same time, energy is required to supply water. In urban water management, the key factor is warm water heating. Depending on the quality of the raw water, the
provision of drinking water requires the application of different process technologies; the more complex the methods, the higher the energy demand. As in metropolitan areas, in particular, water consumption exceeds local availability, water pipelines are necessary with respective energy demand. The reuse of water can contribute significantly to conserve water and energy resources. Usually, the water to be reclaimed is supplied locally, making long-distance transport dispensable. By adjusting the process technology to the intended function (fit for purpose), it is possible to minimize the energy demand as well. Water use implies the input of energy (heat, chemically bound energy in form of organic matter) as well as nutrients (nitrogen, phosphorus, etc.). In the context of implementing water reuse technologies, they can also be reclaimed.

Uso seguro del agua para el reúso

Gives a broad picture of wastewater treatment and reuse; its safe use as a fundamental aspect in water efficiency and security; technologies and biological processes for the treatment of wastewater destined for reuse, policies and regulations for the reuse of wastewater in some countries of Latin America (document is in Spanish).

The Biosolids Emissions Assessment Model (BEAM)

Biosolids management practices are evaluated based on environmental, economic and social impacts. A consideration of increasing importance is the impact of greenhouse gas (GHG) emissions from biosolids (treated sludge). BEAM tool was developed for calculating GHG emissions from biosolids management.

Guidelines on Energy Efficiency on Water and Wastewater Utilities

These EE-Guidelines were tested by three pilot utilities, SONEDE in Tunisia, ONEE in Morocco and Aqaba Water Company in Jordan. The energy checks and energy analysis at the water supply facilities were guided and supported by German experts from Hamburg Wasser, a company with longstanding experience in energy management – and known for its strategic target to be independent from external energy inputs before the year 2020.

Assess your utility’s carbon footprint
X Close

Assess your utility’s energy performance and GHG emissions

Assess my system