

User Manual

Energy Performance and Carbon Emissions Assessment and Monitoring Tool - ECAM

Elaborated by:	WaCCliM - Water and Wastewater Companies for Climate Mitigation
Authors:	Bruno Eduardo Silva* Carolina Cabral* Sebastian Rosenfeldt* *Rotária do Brasil
Reviewers:	Martin Kerres**, Adriana Veizaga**, David Moskopp**, Geraldine Canales**, Catherine Cardich Salazar**, Bianca Corona**, Nadine Ghantous**, Nooraldeen Balah**, Lisa Oberkircher**, Amalia Palacios*** & María Eugenia de la Peña*** **Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) ***Inter-American Development Bank (IDB)
Cite as:	Silva, B. E.; Cabral, C.; Rosenfeldt, S.; Kerres, M.; Veizaga, A.; Moskopp, D. (2022): ECAM User Manual
Acknowledgment	WaCCliM acknowledges the collaboration and information exchange with its partner water and wastewater utilities Miyahuna (Jordan), SITRATA (Mexico) and SEDACUSCO (Peru), which laid the foundation for the development of ECAM and this manual.

Involved institutions:

November 2022

The Water and Wastewater Companies for Climate Mitigation (WaCCliM) project is a joint initiative between the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) and the International Water Association (IWA). This project is part of the International Climate Initiative (IKI). The German Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) supports this initiative on the basis of a decision adopted by the German Bundestag.

Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection Implemented by:

of the Federal Republic of Germany

Executive summary

The ECAM User Manual was conceived in the context of WaCCliM (Water and Wastewater Companies for Climate Mitigation). WaCCliM is a global project implemented by the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH in collaboration with the International Water Association (IWA), which seeks to contribute to a low-carbon and climate-resilient water and sanitation sector. In this sense, WaCCliM developed the ECAM tool (Energy Performance and Carbon Emissions Assessment and Monitoring) to monitor greenhouse gases (GHG) emissions and their reduction achieved through the implementation of mitigation measures.

The **User Manual** was developed as an instrument to support the use of the **ECAM tool** (Energy Performance and Carbon Emissions Assessment and Monitoring). It can help users to estimate greenhouse gases (GHG) emissions from the **Urban Water Sector** activities. This document is intended to be practical, accessible and "straight to the point". To understand the conceptual framework of the ECAM tool, the user can consult the additional document "Methodology Guide".

The document is **organized into topics and sections covering** features and benefits of the tool; contextualization about the methodology; step-by-step instructions on how to use the main functions, including how to fill in data and generate results; case scenario examples and exercises; and a troubleshooting section.

The **ECAM tool** assists water utilities in using their own data to transform it into a source of valuable information on energy performance and GHG emissions. ECAM is the first of its kind to allow for a holistic approach of the urban water cycle to drive GHG emission reduction in water utilities, even those with limited data availability. It promotes transparency, accuracy, completeness, comparability, and consistency. It is designed to assess the carbon emissions that utilities can control within the urban water cycle and prepares utilities for future reporting needs on climate mitigation.

The Water and Wastewater Companies for Climate Mitigation (WaCCliM) project is a joint initiative between the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) and the International Water Association (IWA). This project is part of the International Climate Initiative (IKI). The German Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) supports this initiative on the basis of a decision adopted by the German Bundestag.

Implemented by:

of the Federal Republic of Germany

Table of contents	
List of tables	iiiii
Abbreviations	iv
Glossary	v
Introduction	2
About the ECAM Tool	2
About the User Manual	4
Getting started as a new user	5
Background	6
How are climate change and the urban water sector related?	6
Which methodology does ECAM use to account for GHG emissions?	8
Which greenhouse gases are generated in urban water services?	8
Which terms should I know before using the tool?	10
Which emissions can I calculate with ECAM?	11
Using ECAM	12
Section 1: Configuration	12
Select the language	12
How to start and configure a new assessment	12
Setting the main functions	12
Choosing the general factors	
Save, Load, and Merge assessments	16
How to create multiple assessments	17
How to load data from excel files	18
Section 2: Inventory	19
Systems and stages	19
How to save a file directly from the inventory	20
Inputs	
Where inputs are required	21
How to use estimates in ECAM	25
Outputs	26
How to show outputs	26
How to traceback a result using the highlight function	
How to see formulas, constants, and sources behind the equations	29
Section 3: Results and assessments	32
How to show the results	32
Summary	32
Sankey Diagram	
Report	
Comparing assessments	-
Section 4: Key points when entering data in ECAM	
What should I consider when choosing my inventory scope?	
Where can I get the data to enter in the ECAM tool?	
Wastewater Treatment stage	
How to choose the best option for the Treatment Technology Dropdown Menus	

43How to choose an emission factor for discharge (using Tiers)48Section 5: Case Scenario examples51Calculate emissions from a water pumping facility in the Abstraction Stage51Calculate emissions from a WWTP54Sludge Anaerobic Digester vs Landfilling59Section 6: Putting into practice: proposed case exercises65Calculate emissions from a water pumping facility in the Distribution Stage65Calculate emissions from a WWTP66Conduct a complete assessment of an Urban Water Utility68Results for the proposed exercises71Calculate emissions from a water pumping facility in the Distribution Stage71Calculate emissions from a water pumping facility in the Distribution Stage71Calculate emissions from a water pumping facility in the Distribution Stage71Calculate emissions from a water pumping facility in the Distribution Stage71Calculate emissions from a water pumping facility in the Distribution Stage71Calculate emissions from a WWTP74Conduct a complete assessment of an Urban Water Utility79TroubleshootingixWhere to learn morexReferencesxi	How to choose an emission factor for treatment if my WWTP has two or more core	technologies
Calculate emissions from a water pumping facility in the Abstraction Stage51Calculate emissions from a WWTP54Sludge Anaerobic Digester vs Landfilling59Section 6: Putting into practice: proposed case exercises65Calculate emissions from a water pumping facility in the Distribution Stage65Calculate emissions from a WWTP66Conduct a complete assessment of an Urban Water Utility68Results for the proposed exercises71Calculate emissions from a water pumping facility in the Distribution Stage71Calculate emissions from a water pumping facility in the Distribution Stage71Calculate emissions from a water pumping facility in the Distribution Stage71Calculate emissions from a WWTP74Conduct a complete assessment of an Urban Water Utility79TroubleshootingixWhere to learn morex		
Calculate emissions from a WWTP54Sludge Anaerobic Digester vs Landfilling59Section 6: Putting into practice: proposed case exercises65Calculate emissions from a water pumping facility in the Distribution Stage65Calculate emissions from a WWTP66Conduct a complete assessment of an Urban Water Utility68Results for the proposed exercises71Calculate emissions from a water pumping facility in the Distribution Stage71Calculate emissions from a water pumping facility in the Distribution Stage71Calculate emissions from a water pumping facility in the Distribution Stage71Calculate emissions from a WWTP74Conduct a complete assessment of an Urban Water Utility79TroubleshootingixWhere to learn morex	Section 5: Case Scenario examples	51
Sludge Anaerobic Digester vs Landfilling59Section 6: Putting into practice: proposed case exercises65Calculate emissions from a water pumping facility in the Distribution Stage65Calculate emissions from a WWTP66Conduct a complete assessment of an Urban Water Utility68Results for the proposed exercises71Calculate emissions from a water pumping facility in the Distribution Stage71Calculate emissions from a water pumping facility in the Distribution Stage71Calculate emissions from a water pumping facility in the Distribution Stage71Calculate emissions from a WWTP74Conduct a complete assessment of an Urban Water Utility79TroubleshootingixWhere to learn morex	Calculate emissions from a water pumping facility in the Abstraction Stage	51
Section 6: Putting into practice: proposed case exercises65Calculate emissions from a water pumping facility in the Distribution Stage65Calculate emissions from a WWTP66Conduct a complete assessment of an Urban Water Utility68Results for the proposed exercises71Calculate emissions from a water pumping facility in the Distribution Stage71Calculate emissions from a water pumping facility in the Distribution Stage71Calculate emissions from a WWTP74Conduct a complete assessment of an Urban Water Utility79TroubleshootingixWhere to learn morex	Calculate emissions from a WWTP	
Calculate emissions from a water pumping facility in the Distribution Stage65Calculate emissions from a WWTP66Conduct a complete assessment of an Urban Water Utility68Results for the proposed exercises71Calculate emissions from a water pumping facility in the Distribution Stage71Calculate emissions from a WWTP74Conduct a complete assessment of an Urban Water Utility79TroubleshootingixWhere to learn morex	Sludge Anaerobic Digester vs Landfilling	59
Calculate emissions from a WWTP	Section 6: Putting into practice: proposed case exercises	65
Conduct a complete assessment of an Urban Water Utility	Calculate emissions from a water pumping facility in the Distribution Stage	65
Results for the proposed exercises	Calculate emissions from a WWTP	66
Calculate emissions from a water pumping facility in the Distribution Stage	Conduct a complete assessment of an Urban Water Utility	
Calculate emissions from a WWTP	Results for the proposed exercises	71
Conduct a complete assessment of an Urban Water Utility		,
Troubleshootingix Where to learn morex	Calculate emissions from a WWTP	74
Where to learn morex	Conduct a complete assessment of an Urban Water Utility	
References xi		
	References	xi

List of tables

Table 1 – List of emissions that can be calculated with ECAM, categorized according to the ECAM	
standard names for the urban water cycle stages	11
Table 2 - Possible sources for the main User Input variables	40
Table 3 - Possible sources for the main Estimates	40
Table 4 - Types of wastewater treatment technology, categorized according to the level of	
treatment and the presence (or not) of aeration	42
Table 5 - Suggested emission factors for multi-step treatment technologies	47
Table 6 - Choosing Wastewater Discharge emission factors based on Tiers (Level of Information).	50

Abbreviations

BMUV	German Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection
BOD	Biochemical Oxygen Demand
CC	Climate Change
CH ₄	Methane
CO ₂	Carbon Dioxide
CO ₂ -eq	Carbon Dioxide Equivalent
COD	Chemical Oxygen Demand
ECAM	Energy Performance and Carbon Emissions Assessment and Monitoring
EF	Emission Factor
EIB	European Investment Bank
GHG	Greenhouse Gas
GWP	Global Warming Potential
ICRA	Institut Català de Recerca de l'Aigua
IFI	International Financial Institutions
IKI	International Climate Initiative
IPCC	Intergovernmental Panel on Climate Change
Ν	Nitrogen
N ₂ O	Nitrous Oxide
TN	Total Nitrogen
UNFCCC	United Nations Framework Convention on Climate Change
WaCCliM	Water and Wastewater Companies for Climate Mitigation
WWTP	Wastewater Treatment Plant
WTP	Water Treatment Plant

Glossary

Activated sludge	Flocs of sludge particles containing living microbes, mainly bacteria and protozoans, which are formed in the presence of oxygen in aeration tanks.
Activity data	Data on the magnitude of a human activity resulting in emissions or removals taking place during a given period. Data on energy use, metal production, land areas, management systems, lime and fertilizer use and waste arisings are examples of activity data.
Aerobic	Conditions with free oxygen in the wastewater.
Anaerobic	Conditions in which oxygen is not readily available. These conditions are important to produce methane emissions. Whenever organic material decomposes in anaerobic conditions methane is likely to be formed.
Assessment	Type of diagnosis that allows a utility to create an inventory over its activities within a period, of all its greenhouse gas emissions broken down by emission items
Base year	The starting year for the inventory.
Benchmark	Objective comparison of utilities or facilities.
Carbon footprint	A carbon footprint is the total greenhouse gas emissions caused by an individual, event, organization, service, or product, expressed as carbon dioxide equivalent.
Census	Data collected by interrogation or count of an entire population.
Chemical oxygen demand (COD)	An indication of the amount of organic matter in wastewater. It refers to the amount of oxygen equivalent consumed in the chemical oxidation of organic matter by strong oxidants such as potassium dichromate.
Code	In ECAM, a code is a name associated with a variable, which is used by the tool's algorithm for calculations. Example: "wwt_serv_pop" is the code for Serviced Population with wastewater treatment
Country-specific data	Data for either activities or emissions that are based on research carried out on sites either in that country or otherwise representative of that country.
Direct emission	Emissions originated from sources owned (or controlled) by the utilities. Some examples are CO_2 emissions from in-situ engines and CH_4 and N_2O emissions from wastewater treatment plants.
Dropdown menus	Selectable list in ECAM, based on a reference table.
Emission Factor	A coefficient that quantifies the emissions or removals of a gas per unit activity. Emission factors are often based on a sample of measurement data, averaged to develop a representative rate of emission for a given activity level under a given set of operating conditions.

Glossary

Estimates	Input activity data that can be estimated by the tool or filled in by the user. The estimations are based in user input data.
Fossil carbon	Carbon derived from fossil fuel or other fossil source.
Fuel	Any substance burned as a source of energy such as heat or electricity.
Fuel combustion	Within ECAM, it is the intentional oxidation of materials within an apparatus that is designed to provide heat or mechanical work to a process, or for use away from the apparatus.
Global Warming Potential (GWP)	Global Warming Potentials (GWP) are calculated as the ratio of the radiative forcing of one kilogramme greenhouse gas emitted to the atmosphere to that from one kilogramme CO_2 over a period (e.g., 100 years).
Greenhouse gas	Gas that absorbs and emits radiant energy within the thermal infrared range and contributes to the global warming effect.
Indirect emission	Emissions derived from the acquisition of electrical or thermal energy, consumed by the utility. It also includes emissions that the utility considers that are not part of its operations, such as CH ₄ emissions from wastewater generated by the population not connected to the sewer system.
Input	It includes both the activity data that must be added by the user and the estimates calculated by the software (or calculated by the user). It also includes data chosen from dropdown menus.
Inventory	List of emission sources and the associated emissions quantified using standardized methods.
Organic matter	Organic waste of plant or animal origin from homes or industry, or originated from storm water run-offs, and so on., which mainly contains volatile fraction of solids.
Output	Results of calculations performed by ECAM for GHG emissions and for Energy performance and Service Level indicators.
Output variable	Variable belonging to the outputs Section of ECAM.
Scope	The choice that the utility should do regarding the boundaries of its GHG assessment. It may include defining which emissions will be considered, or which stages will be accounted for.
Stage	Refers to "Water Abstraction", "Water Treatment", "Water Distribution", "Wastewater Collection", "Wastewater Treatment", and "Onsite Sanitation".
Substage	Refers to the facilities that are to be evaluated in each of the stages. Example: Pumping station number 1; or WWTP number 3.

Glossary

System	Refers to Water Supply and Sanitation.
Tier (Level of information)	A tier represents a level of methodological complexity. Usually, three tiers are provided. Tier 1 is the basic method, Tier 2 intermediate and Tier 3 most demanding in terms of complexity and data requirements. Tiers 2 and 3 are sometimes referred to as higher tier methods and are generally considered to be more accurate.
Uncertainty	Lack of knowledge of the true value of a variable that can be described as a probability density function characterizing the range and likelihood of possible values. Uncertainty depends on the analyst's state of knowledge, which in turn depends on the quality and quantity of applicable data as well as knowledge of underlying processes and inference methods.
Variable	Field name of an element used for ECAM calculations, whether in the Input section or output section. Example: "Serviced population with wastewater treatment.
Wastewater	The used water including solids discharged from communities, businesses, industry, or agriculture that flows into a wastewater treatment plant. Storm water, surface water, and groundwater infiltration also may be included.
Urban Water Cycle	It covers the engineered systems that provide essential and safe drinking water and ensure wastewater and sewage removal. In ECAM, those are the "Water Supply" and "Sanitation" systems, which are composed of six stages: "Water Abstraction", "Water Treatment", "Water Distribution", "Wastewater Collection", "Wastewater Treatment", and "Onsite Sanitation".
Urban Water Sector	Refers to utilities, facilities, and urban water activities.
Urban Water Services	Refers to activities provided by urban water utilities.
Urban Water System	Systems designed to meet human demands related to Water Supply and Sanitation.
Urban Water Utilities	Refers to the institutions (public or private) responsible for carrying out the urban water services of a municipality or state.


Note: This glossary describes the terms as they are used in this manual and ECAM.

ENERGY PERFORMANCE AND CARBON EMISSIONS ASSESSMENT AND MONITORING TOOL

ECAM may seem like a difficult tool to use, but it is not.

All equations and formulas are already loaded into the tool, which is programmed to calculate emissions without requiring you to pick up your calculator.

You, as a user, will need to give some inputs for these calculations to take place. You can fill in the activity data available for your utility. For several cases, the ECAM tool suggests estimates based on the Intergovernmental Panel on Climate Change (IPCC), on databases, and on reference literature¹.

Source: images adapted from Flaticon.com

The choice is yours:

- ECAM is a flexible tool that can work with detailed and high-quality data as well as estimations and minimal data to provide relevant outputs to users.
- ECAM performs an automated calculation of Greenhouse Gas (GHG) emissions in urban water and wastewater utilities, integrating the various stages of the water cycle.
- ECAM provides estimations based on literature references or calculations from databases.

¹ The ECAM User Manual does not address the sources behind the emission calculation process, nor the estimates that can be made. These sources can be consulted in the supporting document **"Methodology Guide"**.

Introduction

About the ECAM Tool

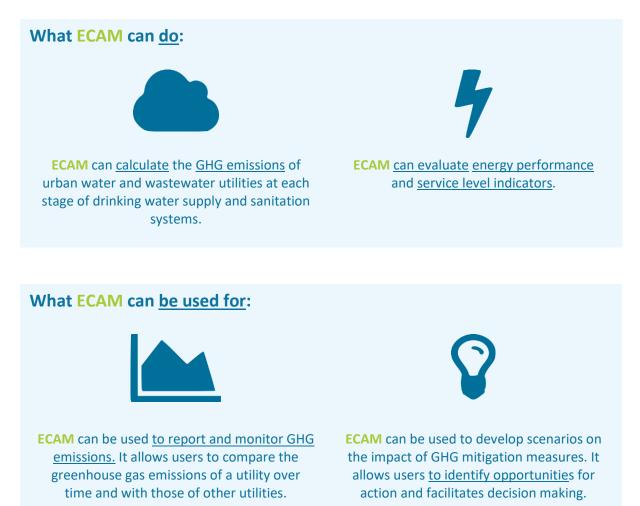
The Energy Performance and Carbon Emissions Assessment and Monitoring Tool (ECAM) is the first Greenhouse gases (GHG) emissions calculation tool focused on the urban water sector, which was developed to promote the reduction of GHG emissions in urban water utilities, designed for utilities with both high-quality data and limited data availability. The advantage over the isolated use of empirical formulas is the possibility of evaluating different systems in parallel, in addition to involving more variables in the calculations, increasing their precision, and facilitating the handling of emissions information by the urban water utilities.

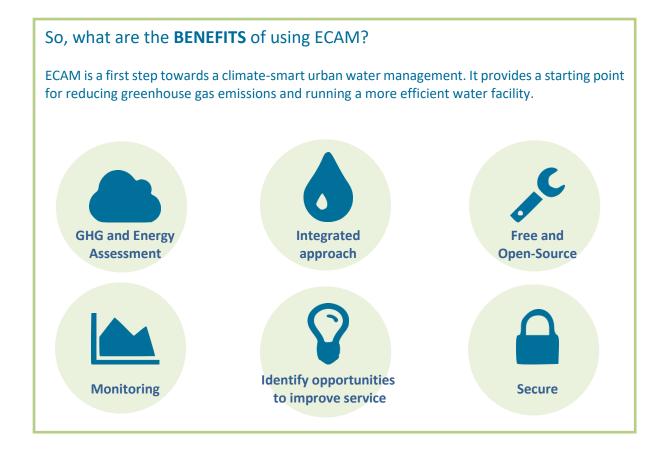
The tool was developed within the framework of the Water and Wastewater Companies for Climate Mitigation - WaCCliM project, which is a joint initiative between the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) and the International Water Association (IWA). WaCCliM is commissioned by the German Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) in framework of the International Climate Initiative (IKI).

It has the purpose of evaluating and monitoring GHG emissions from water and sanitation utilities. ECAM is available online, open source and free to use. Together with IWA and GIZ, the web interface and features were developed by the Institut Català de Recerca de l'Aigua (ICRA). The tool was first developed for WaCCliM project in 2015 as a spreadsheet tool by the consortium Urban Water Commons (LNEC and ITA, Universitat Politècnica de València) in collaboration with Cobalt Water Global. The spreadsheet tool laid the foundation and basic equations for the web-tool.

To cover all utilities, including those that have limited data on their processes, the tool proposes default values based on the literature, which can be modified by the user to better illustrate local conditions. ECAM also allows to incorporate more data as the utility's data management capacity grows. Methodologically, ECAM is based on the *Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories,* including their 2019 refinement (IPCC, 2019).

Based on the GHG estimations generated by the tool, the utility can identify areas with GHG reduction potential and operating expenses, also strengthening performance monitoring and decision-making.


The tool's functionalities include:


- GHG emissions assessment
- Energy performance assessment
- Identification of opportunities for reducing GHG emissions and reducing energy consumption
- Developing scenarios when investigating possible measures to improve performance
- Monitoring the results after the implementation of improvement measures

In terms of data security and privacy, no information is stored in fixed memory on the users' server, but available as a downloadable file containing the assessment. Therefore, all data entered is processed locally and stored solely on the user's computer.

As first of its kind, ECAM follows a holistic approach to the urban water cycle, as it is designed to calculate GHG emissions at all stages of the cycle, enabling integrated comparisons and assessments. By this means, the user can create assessments accounting only some stages of a system, the complete system, or even all the systems of a utility.

It is also possible to include energy performance and service level analyses calculated by the tool, such as: topographic energy use; electromechanical efficiency; sludge management; treatment performance; biogas production; and more.

About the User Manual

The **User Manual** has the aim of helping users to calculate emissions, present results, evaluate scenarios, and compare assessments using the ECAM tool. The target group for this document is composed by technicians, consultants, climate change professionals, academics, policy makers, and other general users who seek to calculate GHG emissions for the Urban Water sector.

In this manual, the user will learn how to use the tool's functions through step-by-step instructions and with the help of screenshots and practical examples and exercises, which will strengthen the learning process. In topic "Section 4: Key points when entering data in ECAM" some key aspects will be explored when filling in the ECAM data, so check it if you have doubts about specific procedures.

In addition to describing the steps to use the tool, this document also includes a basic background that provides context to the user on the topic of GHG emissions in the urban water sector. This approach is quite brief, but it can be consulted in more detail in another support document for ECAM: the **Methodology Guide**.

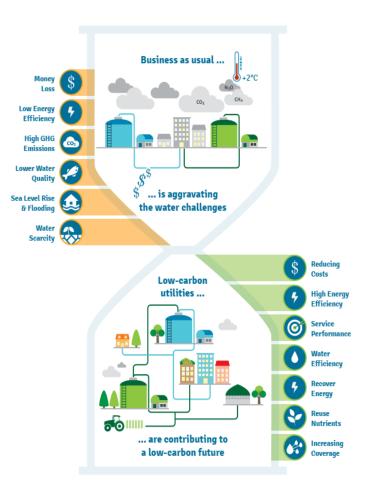
Getting started as a new user

As a new user there are a few things you should **know and do** that will make your ECAM experience more effective:

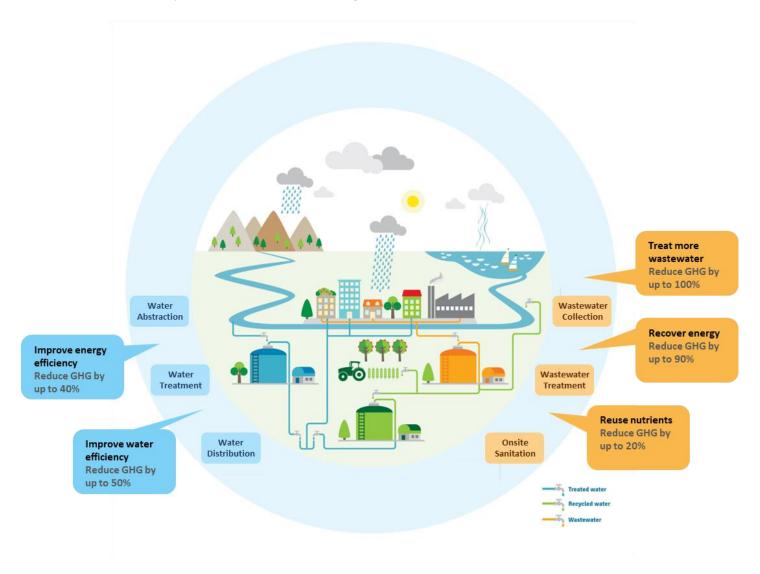
- We encourage you to use spreadsheets to manage your input data. Input errors are easily made by users and will lead to incorrect results!
- Measurement units make all the difference. Use the correct unit. If necessary, it is possible to convert the units with the ECAM itself.
- If needed, there are other training materials that can enhance your ECAM experience.
- ECAM is available in both English and Spanish. Select the most convenient language for your use. Do not use automatic translation in your browser, as this may generate incorrect terms.
- Emission and country specific factors are under constant discussion and research, which means they can potentially change in the future. In this sense, when performing the exercises in this manual, chross-check the factors and, if necessary, change them before comparing the results.

Background

How are climate change and the urban water sector related?


The impacts caused by climate change should be considered during design, construction, operation, and maintenance of the urban water sector infrastructure. These **impacts include**:

- Increased variability and uncertainty in hydrological cycles.
- Prolonged droughts and frequent flooding.
- Extreme hydrometeorological phenomena.
- Sea level rise.
- Increased evaporation and decreased precipitation rates accompanied by higher water extraction rates.


Along with pollution, the effects of climate change fall on the availability and quality of water sources for human consumption. In this sense, urban water utilities face increasing treatment requirements, while having to deal with structural damage caused by extreme weather.

From another perspective, the operation of urban water systems contributes to the generation of greenhouse gases (GHG) emissions, either directly or indirectly. These gases are the main drivers of climate change, which increases the occurrence of extreme events and hinders the availability of natural resources. Therefore, **the relationship between climate change and urban water utilities is cyclical and mutually impacting**.

In this context, <u>business as-usual</u> is no longer a viable option: utilities are challenged to adapt to impacts of climate change but also to champion the transition to a carbon-neutral future, to avoid compounding their challenges.

There is therefore a great opportunity to promote better planning of the urban water services. This also means creating mitigation strategies for GHG emissions within the operation of facilities, ensuring the sustainability of the services and benefiting human life.

- The urban water sector contributes **directly** and **indirectly** to the generation of GHG.
- GHG are the main drivers of climate change, which increase the occurrence of extreme events and reduces the availability of resources.
- The greater occurrence of extreme events and issues related to the resources impact the urban water sector.

Which methodology does ECAM use to account for GHG emissions?

The ECAM tool was developed to be consistent with the **Intergovernmental Panel on Climate Change** (IPCC) Guidelines for National Greenhouse Gas Inventories, including the IPCC 2019 refinement and peer-reviewed literature. <u>The 2019 Refinement (IPCC, 2019)</u> does not replace the original 2006 IPCC Guidelines (IPCC, 2006), but updates, supplements and elaborates it where gaps have been identified.

The IPCC Guidelines for National Greenhouse Gas Inventories have been used as the main reference for equations used to calculate the GHG emission from the different stages of the urban water cycle. In most cases the equations from the IPCC guidelines have been used directly, but in some cases alternate resources have been applied.

When actual data from the utility are not available, default values are set to calculate the GHG emissions. If in the assessment process real data are available, the user can change the default values and, in this way, increment the accuracy of the evaluation.

To consult more details about the conceptual framework of the ECAM tool, as well as the sources and equations used, we suggest accessing the **Methodology Guide** document.

Which greenhouse gases are generated in urban water services?

The three main GHGs emitted from urban water services are <u>carbon dioxide</u> (CO₂), <u>methane</u> (CH₄), and <u>nitrous oxide</u> (N₂O).

Carbon Dioxide (CO₂)

Carbon dioxide is mainly associated with the <u>burning of fossil fuels</u> in stationary and mobile combustion engines. In the urban water sector, it is also the main GHG associated with the consumption of electrical energy from the grid. In many cases, the energy consumed is obtained from a traditional fossil fuel source, such as coal, oil or natural gas, and energy production from these sources generates carbon dioxide emissions. Water and Sanitation utilities encompass high energy-intensive processes, which makes this a significant emission to be considered.

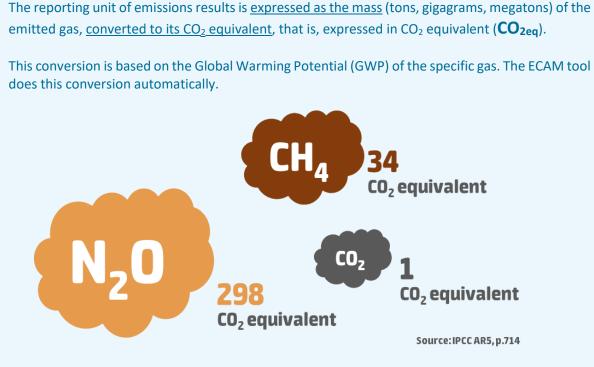
Carbon dioxide can also be emitted from <u>biogenic sources</u>, i.e., emissions related to the natural carbon cycle, as well as those resulting from the combustion, harvesting, digestion, fermentation, decomposition, or processing of bio-based materials. <u>These emissions are not considered in the ECAM</u> tool, and further discussion is given in the document **Methodology Guide**.

Methane (CH₄)

Methane is a gas generated by <u>methanogenesis</u> of organic matter <u>under anaerobic conditions</u>. These conditions can be present in <u>wastewater</u> and <u>sludge</u>. The amount of this gas generated is related to the amount of organic matter and the temperature.

Methane emissions from wastewater treatment can make up a significant portion of a Wastewater Treatment Plant (WWTP) carbon footprint. It also escapes from digested sludge storage facilities.

Methane could also be generated in flowing <u>closed sewers</u>, which is <u>not considered in the ECAM tool</u>. Further discussion is given in the document **Methodology Guide**.


Nitrous oxide (N₂O)

Nitrous oxide, on the other hand, is a GHG associated with the degradation of nitrogenous compounds present in wastewater, such as urea, nitrate, and proteins. Its production is associated with nitrification and denitrification processes. Both processes can occur in a WWTP and in the water body into which the treated and untreated wastewater is discharged.

In WWTP, the highest production of nitrous oxide is generally associated with aeration processes, but it also occurs in other units, such as sludge recirculation, digester sludge, pre-treatment, effluent, and secondary clarifiers.

The generation of N_2O is a very complex process to properly estimate/quantify emissions. In the past, the UNFCCC did not consider WWTPs as relevant sources and further research is still being conducted to properly determine oxide nitrous emissions in wastewater treatment plants. Further discussion is given in the document Methodology Guide.

Different gases, different Global Warming Potential (GWP):

This conversion is based on the Global Warming Potential (GWP) of the specific gas. The ECAM tool

Attention: some gases have very high GWP, for example the N₂O, and therefore small amounts of their emission are equivalent to large amounts of CO_{2eq}.

Which terms should I know before using the tool?

There are some essential terms that need to be known for the user to understand this manual and the basic functions of the ECAM tool. For additional terms, see the "**Glossary**" topic at the beginning of this document.

Activity data	The activity data is information that can be related to the magnitude of a human activity resulting in emissions or removals taking place during a given period. Some examples include population; energy consumption from the grid; fuel consumption; BOD load; etc.
Benchmark	Objective comparison of utilities or facilities.
Code	In ECAM, a code is a name associated with a variable, which is used by the tool's algorithm for calculations. Example: "wwt_serv_pop" is the code for Serviced Population with wastewater treatment.
Direct emissions	Emissions originated from sources owned (or controlled) by the utilities. Some examples are CO_2 emissions from in-situ engines and CH_4 and N_2O emissions from wastewater treatment plants.
Dropdown menu	Selectable list in ECAM, based on a reference table.
Emission Factors	A coefficient that quantifies the emissions or removals of a gas per unit activity. Emission factors are often based on a sample of measurement data, averaged to develop a representative rate of emission for a given activity level under a given set of operating conditions.
Indirect emissions	Emissions derived from the acquisition of electrical or thermal energy, consumed by the utility. It also includes emissions that the utility considers that are not part of its operations, such as CH_4 emissions from wastewater generated by the population not connected to the sewer system.
Inputs	It includes both the activity data that must be added by the user and the estimates calculated by the software (or calculated by the user). It also includes data chosen from dropdown menus.
Inventory	List of emission sources and the associated emissions quantified using standardized methods.
Outputs	Results of calculations performed by ECAM for GHG emissions and for Energy performance and Service Level indicators.
Stages	It refers to "Water Abstraction", "Water treatment", "Water Distribution", "Wastewater Collection", "Wastewater Treatment", and "Onsite Sanitation".
Substages	It refers to the facilities that are to be evaluated in each of the stages.
	It may be necessary to adapt them according to what you want to evaluate. For example: if the user needs to calculate the GHG emissions of a water pumping facility in the "Abstraction" stage, the substage will be the water pumping facility; if the user wants to evaluate the individual efficiency of the pumps in this system, each equipment must be a substage.
Systems	It refers to "Water Supply" and "Sanitation".
Variable	Field name of an element used for ECAM calculations, whether in the Input section or Output section. Example: Serviced Population with wastewater treatment.

Which emissions can I calculate with ECAM?

Table 1 – List of emissions that can be calculated with ECAM, categorized according to the ECAM standard names for the urban water cycle stages.

	-	Water supply	,		Sanitation	
Emissions calculated by ECAM ²	Abstraction	Treatment	Distribution	Collection	Treatment ³	Onsite Sanitation
Direct emissions						
CO ₂ , CH ₄ , and N ₂ O from onsite engine stationary fossil fuel combustion.	•	•	•	•	•	•
CH ₄ from sewers or biological wastewater treatment.				•	•	
N ₂ O from sewers or biological wastewater treatment.				•	•	
CH ₄ and N ₂ O from collected wastewater discharge without treatment.				•		
CH ₄ and N ₂ O from collected treated wastewater discharge.					•	•
CH ₄ and N ₂ O from sludge digestion.					•	•
CH ₄ from faecal sludge containment.						•
CH ₄ and N ₂ O from faecal sludge treatment.						•
N ₂ O from open defecation.						•
Indirect emissions						
CO ₂ from grid electricity usage.	•	•	•	•	•	•
CO ₂ , CH ₄ , and N ₂ O from the combustion of fossil fuels in vehicles.			•		•4	•
CH ₄ and N ₂ O from sludge and faecal sludge management. ⁵					•	•

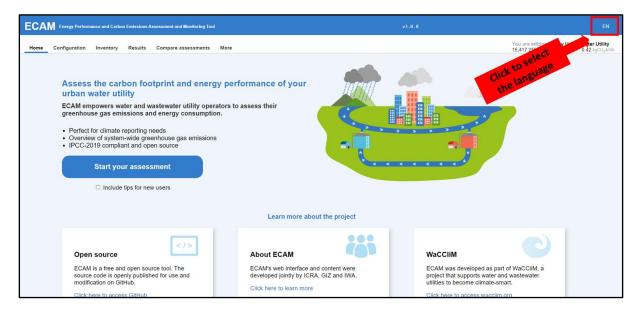
² Further specifications on these emissions and a list of emissions that CANNOT be calculated by ECAM can be checked in the **Methodology Guide**.

³ In ECAM, it includes emission from wastewater treatment and discharge.

⁴ It includes emissions from sludge transport, but which are accounted in "sludge management"; and emissions from truck transport of reused water.

⁵ In the case of wastewater treatment, it includes storage at WWTP (direct emission), transportation, and off-site final disposal. In the case of on-site sanitation, it includes transportation and final disposal.

Using ECAM

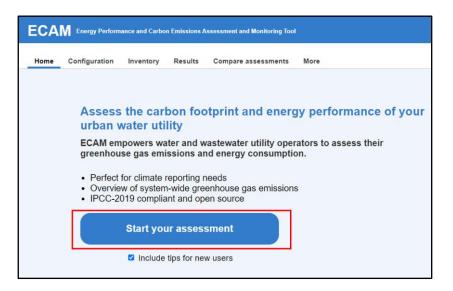

This topic presents the ECAM's features and how to use each one. The subtopics are divided according to the structure of the ECAM tool.

Section 1: Configuration

Select the language

The first thing you will probably feel the need to do is to select your preferred language.

ECAM currently has two language versions: **English** and **Spanish**. Click on the indicated location to select the language.



Attention: The use of automatic translation tools associated with the internet browser is <u>strongly</u> <u>contraindicated</u>, as it may lead to the use of incorrect terms.

How to start and configure a new assessment

Setting the main functions

Click on the "Home" tab and access the "Start your assessment" option.

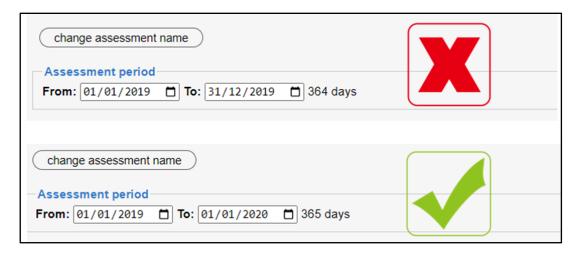
This will lead you to the **Configuration tab**, where the user can <u>choose the Global Warming Report</u>, and select <u>country</u>, <u>evaluation period</u>, <u>file name</u>, and <u>currency</u>.

	ECA	M Energy Perform	ance and Carbon	Emissions A	Assessment and Monit	toring Tool		v3.0.1		EN		
	Home	Configuration	Inventory	Results	Compare assess	sments Mor	e	You are editi 14,885,835 kg	ng Sunny Urban V COgeq 365 days V	Nater Utility 0.42 kgCO ₂ /kWh		
Choose the assessment name Selec cour	+ [Configurat ▼ Load and Load file ■ t ■ t Sum C Sum C Sum C C Sum C C Sum C C Sum C C Sum C C Sum C C Sum C C Sum C C Sum C C Sum C C Sum C C Sum C C Sum Sum C Sum Sum Sum Sum Sum Sum Sum Sum Sum Sum	ON save file when Sunny U Repise current list essments current list essments current period cell.ol.2019 why true ti United State ession factor for gual protein cons by generation (w strial and commit	Itb.x (1) jsk + (1) - + (1) - + (1)	on Append to current lat Select Global Warr Period 2019-01-01 (365 days) 1.01.2020 () 365 1.01.2020 () 365 1.01.2020 () 365 1.01.2020 () 365 1.01.2020 () 365	GHG (gcOcec) End (gcOcec) End (adays	+ ↓ Set 	session as a JSON file ve file ath AR (2014/2013) CCF ♥) hubstages 7 VSD USD 0,410 33,21200 85 1,25	More info ptons hopicate	Sele	ba	lect your ise GWP report
			tional Nitrogen f ewater	from househ	nold products added	to the	more info	1,1	kgN/kgN			
		Com	ments		A	Access invent	ory					

Each of these functions should be chosen with care, since they will influence the entire assessment performed by the ECAM tool. However, the inputs can be also adapted subsequently. In the Configuration tab it is also possible to add comments for the assessment.

Reference GWP Report

Global Warming Potential (GWP) is the ratio of how many times a specific gas emitted is more potent than carbon dioxide (CO_2) in the ability to generate global warming. It is expressed as units of " CO_2 equivalent (CO_{2eq})" (see also page 9).


You must <u>select the IPCC GWP Report</u> that you want to use as a reference to convert your CH_4 and N_2O emissions to equivalent CO_2 emissions. It is suggested to always use the most recent report. But you may need to use an older version for comparison purposes, or as required by your institution.

Assessment name

You can <u>select a name for your assessment</u>. It is important that this name represents the scope of your analysis/inventory so that it is easier to use in future comparisons. For example, to differentiate two assessments of the same wastewater treatment plant, but with different technology solutions, you may want to add an additional identification in the title: "WWTP Central (activated sludge)" and "WWTP Central (UASB)".

Assessment period

The ECAM tool calculates the <u>number of days from the start date</u> to <u>one day before the selected end</u> <u>date</u>. In this sense, to consider a full complete year, the user must **select January 1st of the corresponding year as the start date**, and **January 1st of the following year as the end date**. The tool will also calculate for leap years.

The assessment period must be selected by the user based on the data that will be input into the tool. In this sense, all data will be associated with this period. For example: the user selects assessment period from 01/01/2019 to 01/01/2020. When filling in the energy consumption from the grid (kWh), the user must consider a consumption referring to the corresponding Assessment Period. In other words, the consumption during the 365 days included in 2019.

If the assessed period is less than one year, the ECAM emissions can be displayed for the chosen period or yearly. See topic "**How to show outputs**" for that.

Selection of the country

With this option you can <u>select the country</u> where your system is located. This selection is important since it defines the first four general factors, which will be used to **calculate emissions** and **estimate activity data** in the inventory tab.

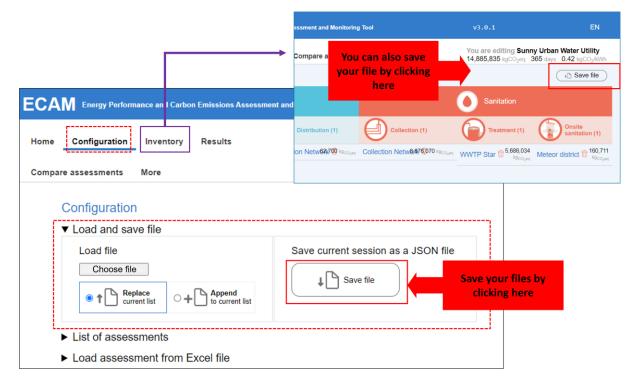
Choosing the general factors

As stated in the previous topics, the selection of the IPCC GWP Report defines the conversions of quantified GHGs to CO_{2eq} , while the selection of the country defines the first four "General factors"⁶: (1) currency; (2) emission factor for grid electricity; (3) annual protein consumption per capita; and (4) BOD₅ generation (wastewater). The next three factors have default values adopted by the ECAM tool, they are: (5) industrial and commercial co-discharged protein into the sewer; (6) non consumed protein added to the wastewater; and (7) additional nitrogen from household products added to the wastewater.

	Configuration			
	▼ Load and save file			
	Datei auswählen Sunny Urbx. (1) json	•	session as a JSON file	
	t current list			
	▼ List of assessments			
	Select Global Warming Potential	Report IPCC	5th AR (2014/2013) CCF 🗸	(More info
	Assessment GHG period (kgCO ₂ eq)	Energy (kWh)	Substages Of	ptions
	Open Sunny Urban Water Utility 2019-01-01 2020-01-01 14,885,835	2,390,100	7 settings d	luplicate
	(365 days)			
	(365 days)			
	(365 days) (change assessment name)			
_	(365 days) (hange assessment name) Assessment period From: [01.01.2019 []] To: [01.01.2020 []] 365 days 1 Country			
General	(365 days) (365 days)			
Seneral factors	(365 days) (hange assessment name) Assessment period From: [01.01.2019] To: [01.01.2020] 365 days Country Select United States of America v More info Currency (3 letters code)		USD	Currency
	(365 days) (hange assessment name) Assessment period From: [01.01.2019] To: [01.01.2020] 365 days Country Select United States of America v More info Currency (3 letters code) Emission factor for grid electricity	more info	0,418	kg _{CO2} /kWh
	(395 days) (hange assessment name) Assessment period From: [01.01,2019] To: [01.01,2020] 365 days Country Select United States of America v More info Currency (3 letters code) Emission factor for grid electricity Annual protein consumption per capita	more info	0,418	kg _{CO2} /kWh kg/person/year
	(395 days) change assessment name Assessment period From: (01.01, 2019) To: (01.01, 2020) 365 days Country Select United States of America ▼ More info Currency (3 letters code) Emission factor for grid electricity Annual protein consumption per capita BOD ₅ generation (wastewater)		0,418	kg _{CO2} /kWh kg/person/year g/person/day
	(395 days) change assessment name Assessment period From: [01.01.2019] To: [01.01.2020]] 365 days 1 Country Select United States of America ▼ More info Currency (3 letters code) 3 Emission factor for grid electricity 4 Annual protein consumption per capita BOD ₅ generation (wastewater) Industrial and commercial co-discharged protein into the sewer	more info	0,418	kg _{CO2} /kWh kg/person/year
	(395 days) change assessment name Assessment period From: (01.01, 2019) To: (01.01, 2020) 365 days Country Select United States of America ▼ More info Currency (3 letters code) Emission factor for grid electricity Annual protein consumption per capita BOD ₅ generation (wastewater)	more info more info	0,418 33,21208 85	kg _{CO2} /kWh kg/person/year g/person/day

Most of these⁷ are all defined based on the IPCC Guidelines (2006 and 2019) and will be used for later calculations by the tool. You can keep the adopted values, or you can modify them by values of your own or from pertinent literature. In this case, expert judgement is recommended to proceed.

The following considerations regarding the exchange of these values by the user must be considered:


⁶ It may be interesting for the user to modify these factors. Check the "Methodology Guide" document for more information.

⁷ The exceptions are the **grid electricity fator** and the **annual protein concumption per capita**. Check the Methodology Guide for details on the sources of each one of them.

- Factor (1) refers only to the currency of the country. It is recommended for the user to modify it **only if there is apparently an error** by the tool.
- Factors (2), (3) and (4) are automatically selected by ECAM referring to tables based on the selected country. Modify these values only if you have **more updated values**, **from reliable methodology**, or **that are official in your country**. You might also check the Methodology Guide. Local factors (with a robust and reliable methodology) should be prioritized since they better represent the characteristics of the region's population.
- Factors (5), (6) and (7) are values that depend on conditions associated with each country's sanitation system. In ECAM, the same default values are adopted for all countries. Consult the Methodology Guide if you wish to modify them based on the IPCC. You can also use local values from a robust and reliable methodology.

Save, Load, and Merge assessments

While in the "Configuration" tab, select "load and save file".

The files are saved with the extension JSON. The ECAM tool <u>does not store your information</u>, so if you want to <u>save your assessment</u> progress it is <u>highly recommended that you do so</u>. If you refresh the webpage, the tool will delete all data and calculations performed. You can also save the file from the Inventory Tab.

If you already have a JSON file, <u>you can load it as well</u>. You can merge multiple JSON files into one file by using the button 'Append'.

ECAM Home C	Energy Perform	aance and Carbon Emissions Inventory Results	Assessment and Monitorio	
2 nd . Select the assessment you	▼ Lo	n <mark>figuration</mark> bad and save file .oad file <u>Choose file</u> Grenada	Training Ex.json	
want to merge		C T Replace current list		Append to current list
	▼ Lis	st of assessments		1 st . Select this option to merge assessments

How to create multiple assessments

One of the options to start evaluating more than one assessment is by using the "Load" option as seen before. But the user may also want to <u>create more assessments</u> from scratch.

In "List of assessments", you can create an assessment by clicking in "+ create new assessment" and you can duplicate one by clicking on the button "duplicate".

You can use the duplicate feature if you want to create multiple assessments where most inputs remain the same, but only a few of the inputs need to the adapted. This is the case, for example, when you are evaluating a complete sanitation system and would like to change just the treatment technology for comparison. Comparing assessments is addressed in topic **Comparing assessments**.

You can delete an assessment by clicking "**delete**". Be aware that it is only possible to delete an assessment if it is not selected for editing.

	Configuration ▼ Load and save file					
	Load file Datei auswählen Sunny Urb…x. (1).	json Append to current list	Save current session as a JSON file			
	List of assessments Sunny Urban Water Utility	2020-01-01	Substages	113) CCF More info Options Coptions Cuplicate		
	Clean Water Utility	2021-01-01 2022-01-01 (365 days)	1	duplicate duplicate		
Click to create new	Grenada Training Ex.	2018-01-01 (365 days)		duplicate		
assessment	Load assessment from Excel 1	ent	3503311011			

You can only edit one assessment at a time. Click on the assessment that you would like to edit. It will turn blue once you have selected it. If you want to unfold country specific information, click on the assessment again or on the button 'settings'.

The process of creating new assessments can be useful in the following cases:

- Comparing the time evolution of a system.
- **Comparing a baseline scenario with project intervention in a same stage**. For example: the exchange of a WWTP composed of lagoons for a new activated sludge system.
- **Comparing different intervention options for the same stage**. For example: we currently send sludge to landfill, but now we would like to check if it is better to compost it or use a sludge digester.
- **Comparing whole systems**. For example: a wastewater utility might want to compare the urban water system of two different cities. These systems would include sub-systems of several stages (collection + treatment + discharge).
- **Comparing solutions that involve more than one stage:** For example, the utility wants to compare the wastewater treatment of three different neighborhoods, but WWTP3 is also partially composed of on-site sanitation.
- And any other creative case the user may come up with!

How to load data from excel files

While in the Configuration tab, you can also **load an assessment in an Excel format**. You can do it by accessing the option "**Load assessment from Excel file**", and then choosing your file. Make sure you used the template provided in this space as a strict reference to allow data to be recognized.

Home	Configuration Inventory	Results Compare as	sessments	More		You are editing Sunny Urba 14,885,835 kgC0 ₂ eq 365 days	n Water Utility 0.42 kgCO2/kW
	Configuration						
	▼ Load and save file						
	Load file			Save curren	t session a	as a JSON file	
	Choose file Sunny Ur	bx. (1).json			Save file		
	Replace current list	+ Append to current list		ŤŪ,	save me	J	
	▼ List of assessments						
		Select Global	Warming Potentia	Report IPCC	C 5th AR (20	14/2013) CCF 🗸 More info	
		Assessment	GHG (kgCO ₂ eq)	Energy (kWh)	Substages	Options	
	Sunny Urban Water U	2019-01-01 2020-01-01 (365 days)	14,885,835	2,390,100	7	settings duplicate	
	Clean Water Utility	2021-01-01 2022-01-01 (365 days)	25,197,374	2,541,993	1	settings duplicate delete	
	Grenada Training Ex.	2017-01-01 2018-01-01	43,865,953	27,600,000	5	settings duplicate	
	Grenada maining Ex.	(365 days)					
	+ create new as						
	+ create new as	sessment		_			
		sessment		1			

Section 2: Inventory

Systems and stages

The "Inventory" tab is the place where the user should input data, which will be used as a basis for the tool to calculate GHG emissions and efficiency indicators.

Two types of <u>systems</u> can be calculated by ECAM: **Water Supply** and **Sanitation**.

For "Water Supply", the tool calculates emissions for the following <u>stages</u> of the urban water cycle: Abstraction; Treatment; and Distribution.

- "Water Abstraction" refers to the process of extracting water from the water source, whether surface or underground. Emissions generated at this stage are mainly calculated based on energy consumption and water abstraction volume.
- "Water Treatment" is the stage that may take place in a Water Treatment Plant (WTP), where the physical, chemical, and bacteriological characteristics are corrected, making it suitable for consumption. Emissions at this stage are calculated primarily based on the volume of treated water and energy consumption data.
- "Water Distribution" is the final stage for Water Supply, in which treated water is transported from the WTP to storage tanks or directly to the final consumer. In this stage, emissions are calculated primarily based on the volume of water injected to distribution, and energy consumption data.

For "**Sanitation**", the tool calculates emissions for the following <u>stages</u> of the urban water cycle: **Collection**; **Treatment**; and **Onsite Sanitation**.

• "Sanitation Collection" is the stage in which there is collection of wastewater generated by the population connected to the sewage system, which also includes wastewater that will not be treated later and will be discharged directly into water bodies. The emissions of this stage are calculated by ECAM mainly from the the loads of BOD and Nitrogen that enter the system, and the energy consumption.

- "Sanitation Treatment" is the stage of the urban water cycle in which collected wastewater is treated at the WWTP. In ECAM, this stage also includes wastewater that is discharged into water bodies after treatment. Emissions are calculated primarily based on data about the influent and effluent BOD and Nitrogen loads, and energy consumption.
- "Onsite sanitation" refers, in the ECAM tool, to the onsite treatment of feacal sludge, ie, at this stage, emission calculations are carried out for decentralized sanitation. GHG calculations are primarily based on data about influent and effluent BOD and Nitrogen loads, and energy consumption.

How to save a file directly from the inventory

The user can also save an assessment directly from the inventory Tab.

	v3.0.1		EN
		file in th	You are editing Sunny Urban Water Utility o save your te inventory tab
0 kg _{00jeq}	Collection (1)	Treatment (1)	Onsite sanitation (1) Meteor district (2) 160,711 keco,ee
	Total Collection: 8,876,070 VpCO2eq + create substage	Total Treatment: 5,686,034 kgC02eq + create substage	Total Onsite sanitation: 160,711 kgC02eq + create substage
			Resident population 55,000 Serviced population 50,000
light mode	OUTPUTS — hide outputs GHG emissions		

To do it, click on the "**Save File**" button in the top right corne of the tab.

Inputs

Where inputs are required

The Inventory tab has three important areas: the **first (1)** is the space for creating substages within the same assessment; the **second (2)** is the space for inputs; and the **third (3)** is the space for the outputs.

ECAM Energy Performance and Carbon Emissi		1. Creation	of substages		You are editing Sunny Urt	
Home Configuration Inventory Result Inventory: stages of the urban water cycle	its Compare assessments More				14,885,835 tgrögen, 385 ta	eys 0.42 kpCOyAMh
	Water.supply			Sanitation		
Abstraction (2)	Tradmart (1)	Distribution (1)	Collection (1)	Treatment (1)	Crisite sanitation (1)	
River Alabama 1 58,520 Hotelan V South wells system 1 8,360 Hotelan	NTP Moon 🔋 30,440 Mooyee Distributio	on Network 🔞 62,700 Hooper	Collection Network 🗇 8,876,070	Notice WWTP Star 🔋 5,60	6,034 Hooper, Meteor district 👕	160,711 No. 2,44
South wells system 👔 8,360 Harrison Total Abstraction: 66,880 HyDrogen	Total Treatment: 33,440 HpCOunt	Total Distribution: 62,700 ap00,eq	Total Collection: 8,876,070 HpCOunt	Total Treatment: 6,686,034 upor	Total Onsite sanitation: 10	60,711 kpC0es
create substage	+ create substage	create substage	+ create substage	reate substage	+ create subst	age 📃
Water 2.	Input			3.0	Output	tine 35,8 etca (61.0
Control at rights U General (1) U Costs (2)				5.0	Julpul	
INPUTS Enter the values for this stage		Highlight mod	OUTPUTS - hide outputs GHG emissions			
Resident population ws_msi_pop		55,000 people	kgCO2eq/ear kgCO2eq/ear kgCO2eq/ea	niserv.pop.	Value Unit	
Energy costs ws_ng_cost	Estimation 0USD	0.3 USD	Abstraction		66,880 kgCO2e	q
Total running costs ws_run_cost	Estimation 0USD	0 USD	Treatment vs. KPL CHO, tre		33,440 kgCO2e	q
			Distribution vs_KPLOH0_ds		62,700 kgCO2e	q
L			Total GHG water supply vs_KPL_GHG		163,020 kgCO24	q
			Energy performance and Service Level ind	icators		
			Serviced population			Value Unit 50.000 people
			serviced population with water supply (%)			90.91 %
			ws_SL_serv_poo Energy consumed from the grid (Abstract	on+Treatment+Distribution)		390,000 kWh
			Volume of fuel consumed (engines)			0 L

The **substages (1)** are created under each stage and represent the <u>facilities</u> to be evaluated. For example: if users want to calculate the emissions for two different water abstraction facilities, they should add 2 substages under "Abstraction" stage, naming them individually.

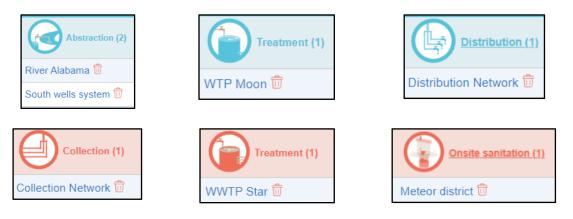
When defining substages for pumping stations:

When having multiple water pumping stations or areas for the same or different water distribution systems, the best criteria to consider and define substages would be:

- 1. Adapt your subtages according to data available and objectives of the assessment. For example, if the objective is to analyze the electromechanical efficiency of each pump separately, substage for each pump can be created. If the objective is to calculate the total emissions for the pumping station, just add one substage.
- 2. Make sure that you are not duplicating sources of emissions when considering pumping stations or volumes of water.

To create a substage, the user should click on "+ create substage".

Inventory: stages of the urban water cycle						
Water supply						
Abstraction (2)		Treatment (1)		Distribution (1)		
River Alabama 觉	58,520 kg _{CO2} eq	WTP Moon 觉	33,440 kg _{CO2} eq	Distribution Network 觉	62,700 kg _{CO2} eq	
South wells system 觉	8,360 kg _{CO2} eq					
Total Abstraction: 66,880	kgCO ₂ eq	Total Treatment: 33,4	140 kgCO2eq	Total Distribution: 62,70	00 kgCO2eq	
+ create substage		+ create subs	tage	+ create substa	ge	
		T.				
	Click to cr	eate as many subs	tages as yo	u need		

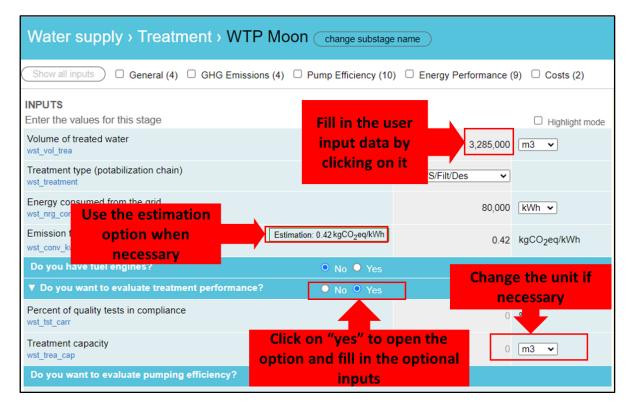

The "Inputs" section (2) is where the user must fill in the data of the selected system, stage, or substage. Each of these elements has a specific input area. To access them, <u>click on the element</u> you want to fill in the data.

Inventory: stages of the urban water cycle							
Water supply							
Abstraction (2)							
River Alabama 🗑 58,520 kg CO_kq		33,440 kg _{CO₂eq} Distributio	on Network 🗊	62,700 kg _{CO2} eq			
South wells system 💼							
Total Abstraction: 66,880 kgCO2eq Total Treatment: 33,440 kgCO2eq Total Distribution: 62,700 kgCO2eq							
+ create substage	+ create substage		+ create sub	+ create substage			
	Water supply > Abstraction > South wells system change substage name Show all inputs GHG Emissions (5) Pump Efficiency (12) Energy Performance (12) Costs (2)						
INPUTS	 	2nd					
Enter the values for this stage		on the element of		Highlight mode			
Volume of abstracted water wsa_vol_conv	adapted to the	ice for inputs will be e <mark>system, <mark>stage</mark>, or to colocted</mark>	1,314,000	m3 🗸			
Energy consumed from the grid wsa_nrg_cons	substat	<mark>ge</mark> selected.	20,000	kWh 🗸			
Emission factor for grid electricity wsa_conv_kwh	Estimation	n: 0.42 kgCO ₂ eq/kWh	0.42	kgCO ₂ eq/kWh			

If the user selects a substage, it will be possible to modify the name inside the input section. The names of the substages could be the names of the assessed facilities.

Inventory: stages of the u	urban water	cycle			
		Wate	r supply		
Abstraction (2)		Treatment (1)		Distribution (1)	
River Alabama 觉	58,520 kg _{CO2} eq	WTP Moon 觉	33,440 kg _{CO2} eq	Distribution Network 觉	62,700 kg _{CO2} ec
South wells system 觉	8,360 kg _{CO2eq}				
Total Abstraction: 66,880 k	gCO ₂ eq	Total Treatment: 33,4		Total Distribution: 6	
+ create substage		+ create subst		nge substage name b clicking here	y
			-		
Water supply > Abs	straction >	South wells s	system	change substage name	
Show all inputs GHG Er	missions (5)	Pump Efficiency (12)	Energy Pe	erformance (12) Costs	(2)

The process of creating substages and renaming them is done in the same way for all the stages of the urban water cycle.


Once an Input Section is opened, the user will find three types⁸ of inputs:

- User input: Input activity data that <u>must</u> be filled in by the user.
- **Estimates**: Input activity data that can be estimated by the tool or filled in by the user. The estimations are based in user input data.
- **Dropdown menus:** Selectable list, based on a reference table.

⁸ Access the Methodology Guide to understand how the ECAM tool proposes each estimate and what the sources for the dropdown menus are. From there, you could prefer to use your own data instead of the suggested ones.

INPUTS						
Enter the values for this stage			Highlight mode			
Volume of treated water wst_vol_trea		3,285,000	m3 🗸			
Treatment type (potabilization chain) wst_treatment		(3) C/F/S/Filt/Des				
Energy consumed from the grid wst_nrg_cons		80,000	kWh 🗸			
Emission factor for grid electricity wst_conv_kwh	Estimation: 0.42 kgCO ₂ eq/kWh	0.42	kgCO ₂ eq/kWh			
<mark>User inputs</mark> are identifiable because it is necessary to fill in some data <mark>. Dropdown menus</mark> have a clickable element that allows you to choose options based on a table. <mark>Estimates</mark> can be filled in by the user, or it is possible to click on the "Estimation" button.						

Some input options include additional analysis on Energy performance and Service Level indicators. The user can select these options by clicking on "**Yes**" and then also fill in the available input fields.

It is also possible to open the Inputs section for **systems** and **stages**, just clicking on them, as done with substages.

The information provided as inputs to systems and stages will not be used to calculate GHG Emissions by the tool, but only to calculate Energy performance and Service Level Indicators.

Inventory: stages of the urban water cyc	Water supply Treatment (1)	Distribution (1)	Click on the systems or stages to also open the Input section for them.
River Alabama 📅 58,520 kacoura	WTP Moon 觉 33,440 kg _{COp} e	Distribution Network	62,700 kg _{CO2eq}
South wells system 1 8,360 KBCO2eq			
Total Abstraction: 66,880 kgCO2teq	Total Treatment: 33,440 kgCO2eq	Total Distribution: 6	2,700 kgCO2eq
+ create substage	+ create substage	+ create sub	istage
Water supply Show all inputs General (1) Costs (2)			
INPUTS			
Enter the values for this stage			Highlight mod
Resident population ws_resi_pop		55,00	0 people

How to use estimates in ECAM

Estimates are an option provided by ECAM to automatically fill some of the input fields. Some of them come directly from the GWP report selected in the configuration tab or from the country specific factors, while others are calculated based on other inputs⁹.

The calculated estimates are based on equations from the literature or the IPCC. However, the user can always choose to fill in the Input instead of using the estimation.

The "**Methodology Guide**" support document provides the sources for each of the estimates performed by ECAM.

Sanitation > Treatment > WWTP Sta	Change substage name	
Show all inputs General (3) GHG Emissions (31) Pump Efficiency (10) Sludge Manageme	nt (41) 🛛 Energy Perf
INPUTS Enter the values for this stage		Highlight mode
Serviced population wwt_serv_pop	50,	000 people
Volume of treated wastewater wwt_vol_trea Click on the	Estimation: 3,650,000 m ³ 3,450,	000 m3 🗸
Volume of discharged efflue suggested value to wwt_vol_disc use an estimation	Estimation: 3,450,000 m ³ 3,450,	000 m3 🗸
Influent BOD ₅ load	Estimation: 1,551,250 kg	· · · · · · · · · · · · · · · · · · ·

Note that if one of the inputs used by ECAM for estimation is not filled in, the tool will show the value "0" for the estimate. You can click on the estimate code to see which variables it is calculated from.

⁹ The sources of each estimate and the formulas used by ECAM to calculate them are covered in the document "Methodology Guide".

Outputs

How to show outputs

The "**outputs**" are the results of the calculations performed by the ECAM tool. The outputs section (3) is on the right side of the inventory tab main page.

nome computation inventory secure compare as				15 417 259 265 0.42
Inventory: stages of the urban water cycle	1. Creation	of substages		(Save file)
🚺 Walar supp				
Abservations (2)				
Network 1 1 56.520 Minute WTP Mapril 33,440 Min				Meteor district 🗇 150.095 (august
/Network 2 👕 8,360 marces				
Total Abstraction: 66,880 monore Total Treatment: 33,440 monore	Total Distribution: 62,700 applicant	Total Collection 8,874,884 mccross	Total Treatment: 6,218,659 (ccts)	Total Onsite sanitation: 160,685 mcCount
+ create substage + create substage	+ create substage	+ create substage	+ create substage	+ create substage
General (4) Containment (10) D Treatment (16) 🗆 Disposal / Enduse (27) 💭 Open Defecation (3) Energy Performance (23)		Population with open defecation 10
INPUTS Enter the values for this stage		OUTPUTS — hide outputs		
Population with onsite sanitation			vear/serv.pop.	Σ sum (1 substages) Unit
BOD ₆ entering the containments	mation: 15.513 kg ~	Electricity (indirect) wwo_KPI_GHG_elec	41.8	41.8 kgCO ₂ eq
Is the containment experiencing flooding or groundwater infiltration?	(0)'No 💌	Fuel engines www.KPI GHG fuel	0	0 kgCO ₂ eq
	2. Inputs	3. Outpu	its	

It presents the calculated results in two categories:

- **GHG emissions**, which include all calculations related to the stages.
- **Energy performance and Service level indicators**, which include the optional analysis regarding the operational efficiency of the systems.

To show the outputs, click on the "**Show Outputs**" button. The results will be indicated by type of GHG emission and by type of indicator.

In the Output section it is also possible to modify the units of the results. If the period of assessment is less than 1 year, it is possible to select the unit $kgCO_{2eq}/year$ to extrapolate the results. However, the user must be aware that this will bring more uncertainty to the generated results.

› Distr	ibution > Distri	ibution Ne	etwork change substage	Resident populat Serviced populat			
General (10) 🗌 GHG Emission	s (8) 🗌 Pump	Efficiency (11) 🗌 Energy Per	formance (14) 🗌 Costs (2)			
s stage) Highlight mode	(show outputs)	ck on "show outputs" to play the outputs section			
	50,000	people					
d to	3,120,750	Choos	e from the	OUTPUTS — hide outputs GHG emissions kgC0 ₂ eq kgC0 ₂ eq/year	kgCO2eq/year/serv.pop.		
the grid	150,000	available	unit options.	ingeoget ingeogetyten	Value Σ sum (1 sub	stages)	Unit
				Electricity (indirect) wsd_KPI_GHG_elec	62,700	62,700	kgCO ₂ eq
kWh	0.42	kgCO ₂ eq/kWh		Total GHG water distribution wsd_KPI_GHG	62,700	62,700	kgCO ₂ eq
ines?	● No ● Yes			Energy performance and Serv	ice Level indicators		
tion by	• No • Yes					Value	Unit
luate wat	er ● No ● Yes			Energy consumption per volu distribution wsd_KPl_nrg_per_vd	ime injected to	0.048	kWh/m ³
	2,465,393	m3 🗸		Energy consumption per auth wsd_KPI_nrg_per_m3	orized consumption	0.061	kWh/m ³
zed	2,964,713	m3 🗸		Non revenue water wsd_SL_nr_water		5	%
				Water losses wsd_SL_water_loss		21	%

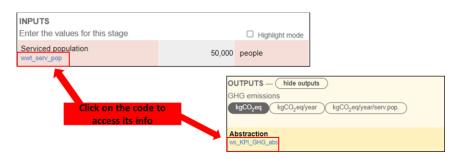
How to traceback a result using the highlight function

An option to visibilize the filling process by the user and the calculation by the tool is to turn on the **Highlight mode**.

The Highlight Mode displays the relationships between inputs and outputs, which can make it easier for the user to check for errors and where they come from. You can hover the outputs to check which inputs are required to calculate them and vice versa.

To activate this option, enter the "**Inventory**" tab and click on the "**Highlight mode**" option, which is next to the space dedicated to inputs.

Inventory Results Compare assessments	More					
urban water cycle						
Water supply						
Treatment (1)	Distribution (1)		Collection (1)			
58,520 kg _{CO2eq} WTP Moon 😇 33,440 kg _C	Ozeq Distribution Network	62,700 kg _{CO2^{eq}} (Collection Network 🗑			
8,360 kecoaeq						
30 kgCO2eq Total Treatment: 33,440 kgCO2eq	Total Distribution: 62,700 kg	gCO ₂ eq	Total Collection: 8,874,884 kgco			
ige + create substage	+ create substage		+ create substage			
nent > WWTP Star <u>change substage name</u>	nent → WWTP Star					
I (3) GHG Emissions (31) Pump Efficiency (10)	Sludge Management (41)	gy Performance (14)	Costs (2)			
	Check the box to activate highlight mode. 50,000	Highlight mode people	OUTPUTS — hide outputs GHG emissions kgC0 ₂ eq kgC0 ₂ eq/year kg			
Estimati	on: 3,650,000 m ³ 3,450,000	m3 🗸	Electricity (indirect) wwt_KPI_GHG_elec			
b water body Estimati	on: 3,450,000 m ³ 3,450,000	m3 🗸	Fuel engines wwt_KPI_GHG_fuel			
Estimat	ion: 1,551,250 kg 912,500	kg 🗸	Treatment process wwt_KPI_GHG_tre			


This mode highlights the relationship between codependent inputs and outputs. With the mode on, placing the mouse over an Input will highlight related outputs. The same goes for clicking the mouse pointer over an output, which will highlight the inputs used for its calculation.

Turn on highlight mode					
Water supply					
Show all inputs General (1) Costs (2)					
INPUTS Enter the values for this stage Resident population wo	Highlight mode 55,000 people ewater utility area of service	OUTPUTS — (Nde exeputs) GHG emissions kgC0_eq/year/kgC0_eq/yearliserv.pop.	Value	Jnit	
Energy costs	0.3 USD	Abstraction ws_KPI_GHG_abs	66,880	gCO ₂ eq	
Total running costs	0 USD	Treatment ws_ICPI_GHG_tre	33,440	gCO ₂ eq	
		Distribution ws_JOPI_GHG_dis	62,700	gCO ₂ eq	
	\	Total GHG water supply ws_KPI_GHG	163,020	gCO2eq	
when you place the mouse pointer ov an input ecam will show you a	ver	Energy performance and Service Level indicators		Value	Unit
description of it and highlight the		Serviced population		50,000	people
outputs related to it		Serviced population with water supply (%)		90.91	%
		Energy consumed from the grid (Abstraction+Treatment+Distribution)		390,000	kWh
		Volume of fuel consumed (engines)		0	L

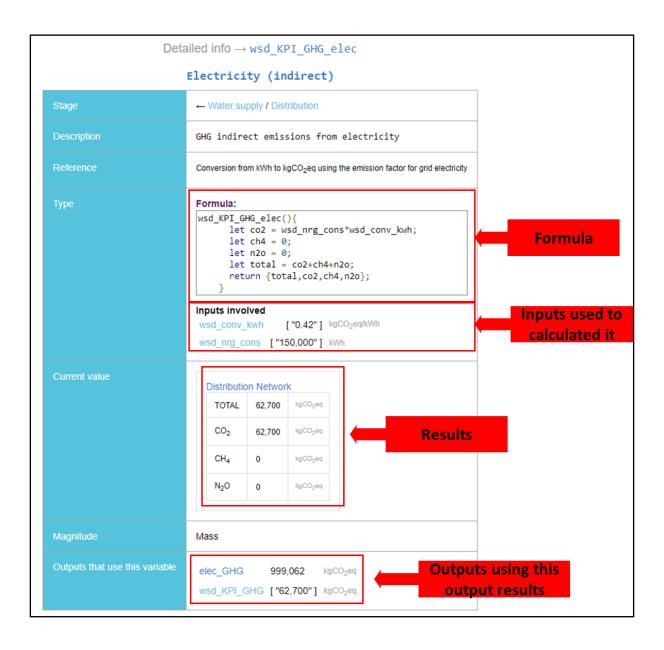
How to see formulas, constants, and sources behind the equations

It may be interesting for the user to check the formulas, constants and sources behind an estimate or calculation of an output.

Below the name of each variable there is a **code**, which is unique and represents that variable in the software algorithm. To check the information behind this variable, just click on this code, which will be highlighted in blue.

Clicking on the code will take you to a section called "**Detailed info**". The information on this page depends on the type of variable being checked.

User inputs: the detailed info will show a description for the variable and the outputs that use it for calculation. You can check related outputs detailed infos by clicking on their codes.


Estimates (inputs): detailed info will additionally show the formula used to estimate the input based on other inputs filled in by the user. You can click on the code of these inputs and go to their detailed info section. You can check related inputs and outputs detailed infos by clicking on their codes.

	Influent BOD5 load
Stage	← Sanitation / Treatment
Description	BOOg load entering the NWTP during the assessment period. It can be estimated by multiplying the average BOOg concentration in the influent by the volume entering the plant. If this is done daily and summed over the duration of the assessment period the volue will be most accurate
Reference	Equation 6.3. Total Organically degradable material in domestic wastewater • frontendidocs/2019-ipco/5_Volume5/19R_V5_6_Ch06_Vastewater.pdf#page=21
Туре	Input
Current value	WWTP Star 912500 kg
Magnitude	Mass
Outputs that use this variable	wwt_KP[_GHG_tre ["4,817,082"] Related outputs wwt_bod_rmwd ["775,625"] Related outputs wwt_bod_effl (drop-down selection) 6.6B and 6.10C) (table: WW treatment organics removal fractions (centralised) (Table 6.6B and 6.10C) is a state of the state
Estimation of this input based on other inputs	<pre>["1.551.250"] %g wwt_bod_infl(substage){ let P = substage.wwt_serv_pop; //population let BOD = bod_pday; //g/person/day return P * BOD = 0.001 * Days(); //kg } Code / Formula</pre>
	Inputs involved Days 365 days Inputs necessary to bod_pday 85 gipersoniday wwt_serv_pop ["50,000"] people perform the estimation

Dropdown menus (inputs): detailed info will additionally display the table that makes up the menu options, as well as the source it is based on, which can also be consulted at the Methodology Guide support document. You can check related inputs and outputs detailed infos by clicking on their codes.

Stage	Sanitation / Treatment			
Description	Total Nitrogen load in the effluent during the assessment period			
Reference	Table 6.10C from 2019 IPCC revision trontend/docs/2019-ipcd/5_Volume6/19R_V5_6_Ch03 References			
Туре	Input			
Current value WWTP Star 194942,0616000002 kg Primary + Secondary (biologi Option selected by the				
Magnitude	Mass			
	WW treatment organics removal fractions (centralised) (Table 6.6B and 6.10C)	Table 6.6B from 2019 able 6.10C from 2019	IPCC revision IPCC revision	
Data table used for suggestions All data tables				
All data tables	name: Untreated systems	bod_effl: 1	N_effl: 1	
		bod_effl: 1 bod_effl: 0.6	N_effl: 1 N_effl: 0.9	
All data tables Table related	name: Untreated systems	-		
Table related to the	name: Untreated systems name: Primary (mechanical treatment plants)	bod_effl: 0.6	N_effl: 0.9	

Outputs: detailed info from outputs will show the formula, the inputs used to calculate the output, the results, references, and other outputs using these results. You can check related inputs and outputs detailed infos by clicking on their codes.

Section 3: Results and assessments

How to show the results

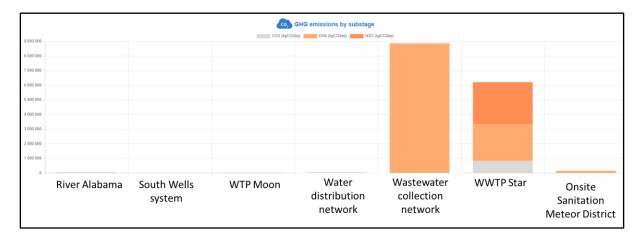
To show the results, the user should click on the "**Results**" tab. There will be sub-tabs to select from: <u>Summary</u>; <u>Sankey diagram</u>; or <u>Report</u>.

Summary

The results are displayed in the Summary sub-tab. In this tab you can select different ways **to display your assessment results**. You can choose between <u>tables, bar charts</u> and <u>pie charts</u>. To do that, just click on the selected option.

When selecting the table option, the user can **present the results** based on the <u>GHG emission</u> or also on the <u>energy consumption</u> in each created substage (when data were provided for such calculation). You can select the unit for both options. The table is intuitive and divided by systems and stages.

The standard for reporting emissions by the IPCC is CO₂ equivalent. However, it may be interesting for the user to display the emissions according to the specific gases. You can do this by selecting the option "**Show emissions in CO₂, CH₄ and N₂O**".


	ECAM Energy Performance and Carbon Emissions Assessment and Monitoring Tool v3.0					
Home Configur	ation Inventory	Results C	ompare assessments Mo		re editing Sunny Urban Water Utility 5,835 kgCO ₂ eq 365 days 0.42 kgCO ₂ /kWh	
		5	Summary Sarkey diagram	Report		
Summary: GHG em	Summary: GHG emissions and energy consumption					
Table Charts G	HG Charts Energ	gy Charts Ser	viced population			
Select summary tal	ble 🖲 GHG	O Energy	Show emissions in CO ₂	, CH₄ and N₂O ● No ○ Yes	Hide zero (0) values in results	
Select units	kgCO2eq 🗸	kWh 🗸				
Total (kgCO ₂ eq)	System (kgCO2eq)	Stage (kgCO2eq)	Emission source	Emission (kgCO2eq)	1	
		Abstraction 66,880	Electricity (indirect)	66,880		
	Water supply 163,020	Treatment 33,440	Electricity (indirect)	33,440		
co,		Distribution 62,700	Electricity (indirect)	62,700		

Another option is to **present the results as pie charts**. Graphs are generated by <u>system</u>, by <u>emitted</u> gas, and by <u>stage</u>.

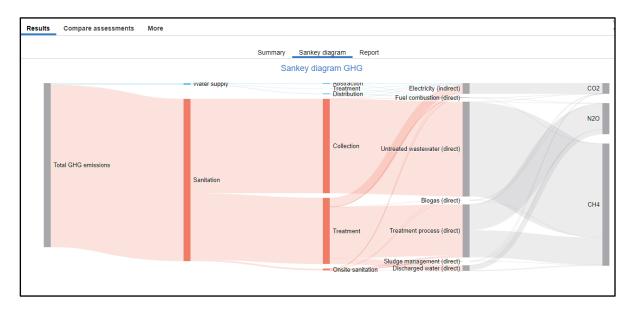
able Charts GHG Charts Energy Charts Serviced population	
elect units kgCO2eq v	
o, GHG emissions	GHG emissions by stage
Water supply 163,020 kgCO2eq	Abstraction 66,880 kgC02cq
Sanitation 14,722,815 kgCOgeq	Treatment 33,440 kgCO2eq 38%
	Distribution 62,700 kgCO2eq
	Collection 8,876,070 kgCO2eq 60%
99%	Treatment 5,686,034 kgCO2eq
	Onsite 160,711 kgCO ₂ eq

A third option is the **bar charts**, which are just below the pie charts. The bar graphs present the results by substages created within the stages.

Note that bar graphs should be used with caution when substages have very different outputs. In the example below, the emissions from the water system are much lower than those from the sanitation system, which makes it impossible to visually compare water system emissions. If the user is going to present these results, it may be interesting to manually add also the analytical values found for each substage.

Sankey Diagram

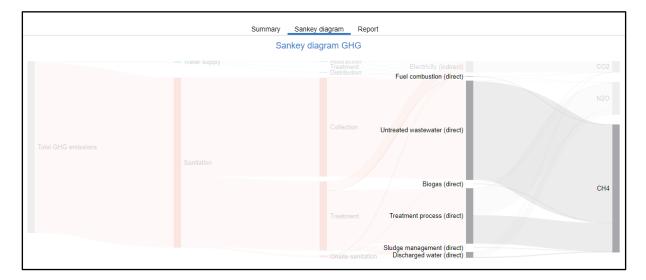
Another way to present results is using a sankey diagram.


The Sankey Diagram presents the amount of GHG emissions as "flows" following the logic:

- The greater the thickness, the more GHG emissions were generated.
- Colored results refer to total emissions in CO₂ equivalent.

• The **black and white results** are the division of these emissions according to the **specific** gases.

Sankey diagrams allow you to show complex processes visually, with a **focus on a single aspect** that you want to highlight. They also support **multiple viewing levels**, as you can analyze the entire assessment in general, or focus on specific stages or specific emissions, or even on specific gases.


The example below shows the Sankey diagram of an urban water utility. Starting the reading from the left to the right, it is possible to see right away that the **Sanitation system generates much more emissions than the Water Supply system**. Apparently, the **largest** emissions are related to the **wastewater collection** and **wastewater treatment stages**. Remember that the amount is defined by the thickness of the flow, and that colored emissions are in CO_2 equivalent.

To analyze the diagram in multiple levels, it is necessary to **place the mouse pointer over the name** of which element you want to visualize and check its correlations. For example, by hovering over "**Biogas (direct)**" it is possible to verify that this type of emission comes from the wastewater treatment and onsite sanitation stages, when reading from the right to the left. Additionally, reading from left to right, biogas emissions are generating CO₂, N₂O and CH₄, and it is not possible in this case to differentiate the quantities between them.

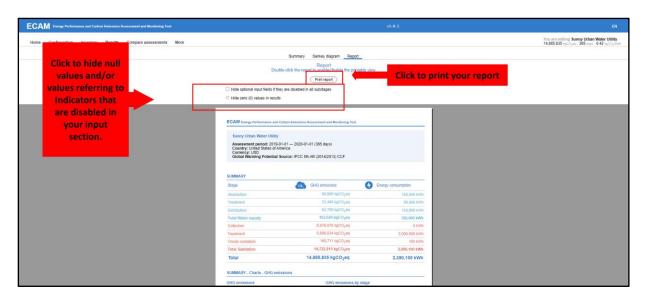
	Sankey diagram GHG		
- vvater supply			C02 N20
	Bit Treatment Treatment pro-	ogas (direct) ncess (direct)	CH4

In another example, when hovering over CH_4 , we observe that most methane emissions come from wastewater collection. From this information, it is possible to search for additional information in other features of the ECAM tool.

As a last example, if we want to analyze emissions related to electricity, we should place the mouse over "**Electricity (indirect)**". It is therefore noted that most of these emissions come from the Wastewater Treatment stage, and that they are exclusively CO₂.

	Sankey diagram GHG	
	Ausuracium Electricity (indirect) Treatment Electricity (indirect) Distribution Fuel combustion (direct)	CO2
	Collection Unireated wastewater (direct)	
	Biogas (direct) Treatment Treatment process (direct) Sludge management (direct) Onsite sanitation Discharged water (direct)	

Report

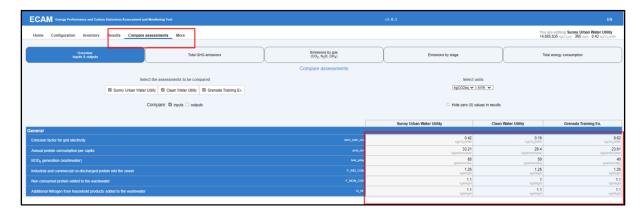

In the Report sub-tab it is possible to access a **summary of all of the charts and diagrams** related to your assessment.

It also displays a **summary of GHG emissions** by <u>systems</u> and <u>stages</u>, as well as **energy consumption** for these elements.

All **inputs** and **outputs** of each created **substage are also shown**, which can be interesting to archive the background referring to your assessment. This way it will be possible to understand the results, look for possible errors, and even ensure that future discrepant results are justified.

There is also the option to hide input fields disabled in substages and to hide results equal to zero (0), which may be interesting to keep your report clearer and shorter.

It is possible to print your report clicking on "**print report**" option and saving it as a pdf.



Attention: Remember that this option generates a document for visual presentation only. To save your data, use the save as JSON option, as previously explained in topic Save, Load, and Merge assessments.

Comparing assessments

When the user is working with more than one assessment, there is an option to compare assessments. This option will generate a table comparing all the outputs and inputs of both assessments.

Select the assessments that you would like to compare with each other. Please note that the order of the selection determines the order of the compared assessments. For example, if you have 3 assessments for the years 2018, 2019 and 2020, you will need to select the assessments in this order. If you select 2019, 2020 and 2018, the order would be different.

You can also display the comparison in the form of bar and line graphs. These options can be accessed in the subtabs.

Section 4: Key points when entering data in ECAM

This topic presents some key points that the user should know when entering data in the ECAM tool.

What should I consider when choosing my inventory scope?

Typically, in the urban water sector, emissions are assessed separately and using different tools. The ECAM tool, however, has been developed to facilitate the assessment of systems via a holistic approach, considering all stages of the urban water cycle and the interlinkages between stages. The aim is to maintain the overview on the entire urban water cycle in the analysis, to convey the notion that sub-systems are inter-related.

The choice of which systems will and will not be considered is called **scoping**. A scope of a GHG emissions inventory may include, for example: only one specific WWTP that needs diagnosis; a specific water distribution zone; or a set of systems belonging to the same urban water utility. The decision on which scope to consider should consider:

- The **context of the inventory**, i.e., what is the user's objective of realization, what are the purposes, etc.
- **Organizational boundaries**, that is, the specific characteristics of the utility (geographical location, service municipalities, responsibilities within a shared system, etc.)
- **Operational boundaries**, which refer to deciding which processes to consider (on-site and offsite activities? Just a part of my treatment because I am interested in switching to another technology? Etc.)

Where can I get the data to enter in the ECAM tool?

Filling Input data in the ECAM tool is done in the following ways:

- Data that must be provided directly by the user (user input data), considering inputs for the whole time-period defined.
- Data estimated or suggested by ECAM:
 - Data suggested by the tool based on the selected country and GWP report, which can also be modified by the user.
 - Data calculated through estimations, which can also be modified by the user.
 - Data calculated based on dropdown menus, which are supported by reference literature, and which can also be modified by the user.

Data that must be filled in by the user include those related to population, volume of water/wastewater, energy consumption, among others. Table 2 shows the main user input variables, and from which sources it is possible to obtain them. The user must consider the possible errors associated with each of these sources. Utilities might use standardized sources defined in official documents. (the suggested sources are suggestions, and therefore they do not exclude others that are considered pertinent by the user).

Table 2 - Possible sources for the main User Input variables

Input User Variables	Possible Sources (from top to bottom: most accurate to least accurate)
Resident population	Most recent censusProject documentation
Serviced population	 Commercial registration Estimated value based on monitored influent flow (WWTP) Project documentation
Volume of water and wastewater	 Macrometer data Operational control Estimates based on measurements with series failures Estimates based on instantaneous point measurements Estimates from water balance
Energy consumed from the grid	 Energy bills Operational log from the control panel Estimates based on equipment operating hours Extrapolated values based on the operation of pumps with frequency inverters
Volume of fuel consumed	Operational controlPurchase receipts
Number of serviced connections	Commercial registrationProject documentation

The support document "**Methodology Guide**" presents the equations and data tables for each of the ECAM suggestions and estimates. But it is also possible to enter your own values (Table 3).

Table 3 - Possible sources for	the main Estimates
--------------------------------	--------------------

Input ECAM estimates/suggestions	Possible Sources (from top to bottom: most accurate to least accurate)
Emission factor for grid electricity	 Official country-specific factors, defined by local methodology Updated data from the International Financial Institutions (IFI) Dataset of Default Grid Factors¹⁰ ECAM suggestions
BOD ₅ and Nitrogen influent loads	 Monitoring Protocol ECAM estimates Project documentation (influent and effluent)
BOD₅ and Nitrogen effluent loads	 Monitoring Protocol ECAM estimates Estimate in accordance with the treatment process adopted (effluent)
Biogas produced	 Monitoring Protocol Operational control Estimates based on instantaneous point measurements ECAM estimates

¹⁰ The ECAM tool suggests the IFI data released in its last update, 2020. However, this data is updated every two years, and is available at: https://www.eib.org/en/publications/eib-project-carbon-footprint-methodologies

Input ECAM estimates/suggestions	Possible Sources (from top to bottom: most accurate to least accurate)					
	Project documentation					
Sludge mass	 Operational control ECAM estimates Project documentation 					

Wastewater Treatment stage

In this topic some specifics about the Wastewater Treatment stage will be addressed. They are:

- Information on **choosing wastewater treatment technologies** from the options provided by the ECAM dropdown menus
- Information on how to calculate an average emission factor for WWTP with multi-step technologies without sludge removal
- Information on how to calculate an average emission factor for WWTP with multi-step technologies with sludge removal
- Information on how to calculate an average emission factor for WWTP with multi-step technologies with sludge removal and with biogas recollection

How to choose the best option for the Treatment Technology Dropdown

Menus

The dropdown menus are a feature provided by the ECAM tool to facilitate the selection of options based on official guidelines and scientific reference. These sources include the IPCC Guidelines (2006; 2019); traditional literature (Chernicharo, 2015; Von Sperling, 2015); official technical publications (EIB, 2020; FAO, 2022; UNFCC, 2022); and technical-scientific papers (Alegre et al., 2006; Cabrera et al., 2011; Silva; Rosa, 2014). These and other sources are further explored in the supporting document "**Methodology Guide**".

The terms used specifically in the Sanitation Treatment stage dropdown menus are broad, so you may find it difficult to relate them to your operational routine. To facilitate this correlation between the broader terms used by the IPCC for this specific stage and your operational routine, see Table 4.

Table 4 - Types of wastewater treatment technology, categorized according to the level of treatment and the presence (or not) of aeration¹¹¹²

Primary treatment

- Anaerobic Reactors (depending on the WWTP design)
- Coarse solids reductors
- Grit and oil separators
- Imhoff tanks
- Primary clarifiers
- Screens

Secondary treatment

- Activated Sludge
- Anaerobic Reactors (depending on the WWTP design)
- Biological aerated filters (BAF)
- Constructed Wetlands
- Lagoons
- Membrane bioreactor (MBR)
- Moving bed biofilm reactor (MBBR)
- Packed bed reactor
- Rotating biological contactor (RBC)
- Trickling Filter
- UASB (depending on WWTP design)

Tertiary treatment

- Adsorption
- Air and steam stripping
- Coagulation/Flocculation
- Ion exchange
- Membrane processes
- Oxidation (chemical, wet air, supercritical water)
- Tertiary Filtration

Centralised, aerobic, treatment plant

- Activated sludge
- Aerated Lagoons
- Aeration Basin
- Biological aerated filters (BAF)
- Biological Trickling filters
- Fixed Bed Bioreactors (FBBR)
- Membrane bioreactor (MBR)
- Moving bed biofilm reactor (MBBR)
- Oxidation ditches
- Packed bed reactor
- Rotating biological contactor (RBC)

Anaerobic reactor

- Anaerobic Baffled Reactor (ABR)
- Anaerobic contact reactor
- Anaerobic filter
- CSTR
- Down flow fixed-film reactor
- Expanded-bed process
- UASB
- Upflow packed bed reactor

Choosing the correct option from the dropdown menus will ensure that the correct GHG emissions are accounted for. In this regard, note that:

- Primary level treatment generates mostly CO₂ emissions, while secondary and tertiary treatment may also generate N₂O and CH₄ emissions.
- Aerobic treatments generate mostly N_2O and CO_2 , while anaerobic treatments generate mostly CH_4 and CO_2 .

¹¹ Lagoons are also referred as "Ponds".

¹² "Preliminary" and "primary" treatment technologies are both shown as primary in this table, as the base references to the dropdown menus do so.

 Regardless of the technology selected, remember that the generation of GHG in a WWTP also depends on how the facility is being operated. The dropdown menu values are based on data tables which are results from an average of case studies, and therefore may not represent your reality¹³.

How to choose an emission factor for treatment if my WWTP has two or more core technologies

According to the IPCC (2019), the calculation of GHG emissions in wastewater treatment processes is given by Equation 1.

....

Equation 1 – Calculating CH_4 an	nd N ₂ O emissions in a wastewater treatment process ¹⁴
CH4 _{WWTP, emissions} = (BO	D _{inf, load} - BOD _{sludge}) · EF _{CH4, treatment}
N2O _{WWTP, emissions} = TN _{in}	nf, load · EF _{N2O, treatment}
Where:	
CH ₄ emissions	Total of CH ₄ emissions in a wastewater treatment process [kgCH ₄ /year]
N ₂ O _{emissions}	Total of N ₂ O emissions in a wastewater treatment process $[kgN_2O-N/year]$
BODinf, load	Influent BOD load [kgBOD ₅ /year]
BODinf, load	BOD removed as sludge [kgBOD ₅ /year]
EFCH4, treatment	Methane emission factor for wastewater treatment $[kgCH_4/kgBOD_5]$
TN _{inf, load}	Influent Total Nitrogen load [kg N/year]
EFN2O, treatment	Nitrous oxide emission factor for wastewater treatment $[kgN_2O-N/kgN]$

But in ECAM it is not necessary to perform this calculation manually. To calculate emissions from wastewater treatment, the user must fill in the input data and **select the CH₄/N₂O treatment emission factors**.

In the tool, you can select this emission factor from several options available in a dropdown menu by choosing your WWTP core technology, as shown below.

¹³ Further discussion in the Methodology Guide.

¹⁴ For didactic reasons, the equations here are simplified. For additional considerations, see the IPCC Guidelines (2019).

wit_vol_disc	Estimation: 29,200,000 m ²	29,200,000	m3 🗸
Influent BOD ₅ loz wwt_bod_infl contains a reference table	Estimation: 7,300,000 kg	7,300,000	kg 🕶
Effluent BOD ₅ loa with EF values depending on	~	1,095,000	kg 🕶
Total Nitrogen loa	Estimation: 2,499,257 kg	2,599,227	kg 🗸
Total Nitrogen load in the effluent wwt_tn_effl Primary + Secondary (biological treatment plants) (1.559,536 kg)	1,559,536	kg 🗸	
CH ₄ emission factor (treatment) wwt_ch4_efac_tre [Centralised, aerobic, treatment plant (0.018)	0.018	kgCH ₄ /kgBOD	
Type of treatment undefined (0)	•		
Centralised, aerobic, treatment plant (0.018)	1	on factor of selected bio	logical wastewate
Anaerobic Reactor - CH4 recovery not considered (0.48) Anaerobic Reactor - CH4 recovery considered (0.14) Anaerobic shallow lagoon and facultative lagoons (<2m depth) (0.12)		0.016	kgN ₂ O-N/kgN
Anaerobic deep lagoon (>2m depth) (0.48) Anaerobic Lagoon covered (0) Wetlands - Surface flow (0.24) Wetlands - Horizontal subsurface flow (0.06)	0.021	kgCH ₄ /kgBOD	
Wetlands - Vertical subsurface flow (0.006) Aerated Lagoon (0.06) Trickling Filter (0.036) Custom value		0.005	kgN ₂ O-N/kgN
Energy consumed from the orig		0.544.000	[110]

This procedure is quite simple for users who are evaluating **only one specific core technology**. When choosing the CH₄ emission factor, for example:

- In the case of a treatment based on an anaerobic lagoon, choose the option "Anaerobic deep lagoon (EF = 0.48)";
- Or in the case of a treatment based on an extended aeration (activated sludge) reactor, choose the option "Centralised aerobic treatment plant (EF = 0.018).

But in the case of **more than one treatment technology** (eg. Anaerobic lagoon followed by a Facultative Lagoon), the procedure requires additional steps. It is therefore suggested that the user calculates an <u>average emission factor</u> for these combinations of technologies.

Equation 2 was developed by applying Equation 1 (provided by the IPCC) to each of the WWTP's core technologies. Equation 2 can be used to calculate the **average emission factor** for both CH_4 and N_2O emissions.

The Equation 2 is developed by equating steps 1 and 2 defined below.

Equation 2 - Calculating average emission factors for WWTP with more than one core technology

$Emissions_{treatment} = (Load_{1st tech} - Sludge_{1st tech}) \cdot EF_{1st tech} + (Load_{2nd tech} - Sludge_{2nd tech}) \cdot EF_{2nd tech}$	(step 1) ¹⁵
Emissions _{treatment} = (Load _{1st tech} - Sludge _{1st tech} - Sludge _{2nd tech}) · EF _{average}	(step 2) ¹⁶

$$\mathsf{EF}_{\mathsf{average}^{17}} = \frac{(\mathsf{Load}_{\mathsf{1st tech}} - \mathsf{Sludge}_{\mathsf{1st tech}}) \cdot \mathsf{EF}_{\mathsf{1st tech}} + (\mathsf{Load}_{\mathsf{2nd tech}} - \mathsf{Sludge}_{\mathsf{2nd tech}}) \cdot \mathsf{EF}_{\mathsf{2nd tech}}}{\mathsf{Load}_{\mathsf{1st tech}} - \mathsf{Sludge}_{\mathsf{2nd tech}}}$$

Where:

EmissionStreatment	Total of CH $_4$ or N $_2$ O emissions considering two WWTP core technologies [kgCH $_4$ /year or kgN $_2$ O-N/year]
Load _{1st tech}	BOD or Total Nitrogen load influent to the 1_{st} technology [kg BOD_5/year or kg $N/\text{year}]$
Load _{2nd} tech	BOD or Total Nitrogen load influent to the 2_{nd} technology [kg \mbox{BOD}_5/\mbox{year} or kg $N/\mbox{year}]$
EF1st tech	Emission factor – 1st technology [kgCH ₄ /kgBOD ₅ or kgN ₂ O-N/kgN]
EF _{2nd tech}	Emission factor – 2nd technology [kgCH ₄ /kgBOD ₅ or kgN ₂ O-N/kgN]
EFaverage	Average emission factor [kgCH ₄ /kgBOD ₅ or kgN ₂ O-N/kgN]
Sludge 1st tech	BOD removed as sludge – 1st technology [kgBOD ₅ /year] ("= 0" when calculating average N_2O emission factors)
Sludge 2nd tech	BOD removed as sludge – 2nd technology [kgBOD ₅ /year] ("= 0" when calculating average N_2O emission factors)

Note that the ECAM also calculates the BOD removed as sludge, although the users can calculate this value with their own data.

If there is no significant frequency of sludge removal on any of the WWTP core technologies, the users can use a simplified equation.

Equation 3 is a simplification of Equation 2, for which the users should only know the individual emission factors of each technology (provided by ECAM) and their wastewater treatment efficiencies.

¹⁵ "step 1" is a variation of Equation 1, considering the sum of emissions in each of the core technologies.

¹⁶ "step 2" is a second variation of Equation 1. In this case, a blackbox boundary condition model is assumed.

¹⁷ The equation considers two core technologies (eg. Anaerobic lagoon + Facultative lagoon). In the case of three or more, just add identical variables for the additional technologies.

Equation 3 - Calculating average emission factors for WWTP with more than one core technology (without sludge removal)

EF_{CH4,average} = EF_{CH4,1st tech} + (1- η_{BOD, 1st tech}) · EF_{CH4,2nd tech}

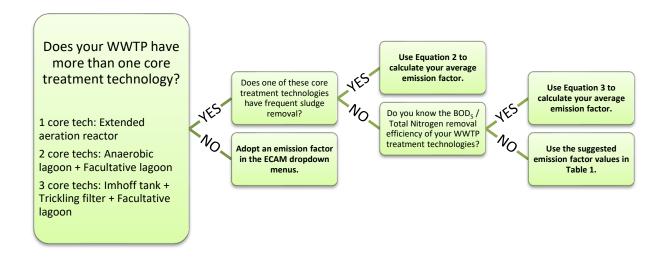
 $\mathsf{EF}_{\mathsf{N2O},\mathsf{average}} = \mathsf{EF}_{\mathsf{N2O},\mathsf{1st tech}} + (1 - \eta_{\mathsf{N},\,\mathsf{1st tech}}) \cdot \mathsf{EF}_{\mathsf{N2O},\mathsf{2nd tech}}$

Where:

EFCH4, average	Average methane emission factor [kgCH ₄ /kgBOD]
EFCH4, 1st tech	Methane emission factor – 1st technology [kgCH ₄ /kgBOD ₅]
EFCH4, 2nd tech	Methane emission factor – 2nd technology $[kgCH_4/kgBOD_5]$
η BOD, 1st tech	BOD_5 removal efficiency in the 1st technology [%]
EF _{N2O} , average	Average nitrous oxide emission factor [kgN2O-N/kgN]
EF _{N2O} , 1st tech	Nitrous Oxide emission factor – 1st technology [kgN2O-N/kgN]
EFN20, 2nd tech	Nitrous Oxide emission factor – 2nd technology [kgN ₂ O-N/kgN]
η N, 1st tech	Total Nitrogen removal efficiency in the 1st technology [%]

In case the user does not know exactly the treatment efficiencies of the WWTP core technologies, we suggest the adoption of EF values from Table 5, which were calculated based on reference literature.

	Eficiency Removal in the first technology (% of removal)				Emission Factor (kgCH4/kgBOD5 or kgN2O-N/kgN)					
Treatment technology	BOD	BOD ₅		N _{total}		nology	2 nd technology		Aver	age
	Literature ¹	Adopted	Literature ¹	Adopted	EF _{CH4}	EF _{N2O}	EF _{CH4}	EF _{N2O}	EF _{CH4}	EF _{N2O}
Facultative lagoon	75 – 85 %	80%	< 60 %	20%	0.120	0.016	-	-	0.120	0.016
Anaerobic lagoon (no biogas recolected) + Facultative lagoon	_ 2	50%	_ 2	20%	0.480	0.000	0.120	0.016	0.540	0.013
Anaerobic lagoon (biogas recolected) + Facultative lagoon	_ 2	50%	_ 2	20%	0.140	0.000	0.120	0.016	0.200	0.013
Imhoff tank (no biogas recolected) + facultative lagoon	_ 2	60%	_ 2	20%	0.480	0.000	0.120	0.016	0.528	0.013
Imhoff tank (biogas recolected) + facultative lagoon	_ 2	60%	_ 2	20%	0.140	0.000	0.120	0.016	0.188	0.013
Imhoff tank (no biogas recolected)	_ 2	60%	_ 2	20%	0.480	0.000	-	-	0.480	0.000
Imhoff tank (biogas recolected)	_ 2	60%	_ 2	20%	0.140	0.000	-	-	0.140	0.000
Aerated lagoon	75 – 85 %	80%	< 30 %	20%	0.060	0.016	-	-	0.060	0.016
Anaerobic lagoon (no biogas recolected) + Aerated lagoon	_ 2	50%	_ 2	20%	0.480	0.000	0.060	0.016	0.510	0.013
Anaerobic lagoon (biogas recolected) + Aerated lagoon	_ 2	50%	_ 2	20%	0.140	0.000	0.060	0.016	0.170	0.013
UASB (no biogas recolected) + Aerated Lagoon	60 – 75 %	70%	< 60 %	20%	0.480	0.000	0.060	0.016	0.498	0.013
UASB (biogas recolected) + Aerated Lagoon	60 – 75 %	70%	< 60 %	20%	0.140	0.000	0.060	0.016	0.158	0.013
UASB + trickling filter	60 – 75 %	70%	60 – 75 %	20%	0.480	0.000	0.036	0.016	3	0.013
Anaerobic lagoon + trickling filter	- 2	50%	_ 2	20%	0.480	0.000	0.036	0.016	3	0.013
UASB + Anaerobic Filter	60 – 75 %	70%	< 60 %	20%	0.480	0.000	0.480	0.000	0.624	0.000
Primary clarifier + Digester/Imhoff tank + Trickling filter	_ 2	60%	_ 2	20%	0.480	0.000	0.036	0.016	3	0.013
Extended aeration	90 – 97 %	90%	< 60 %	40%	0.018	0.016	-	-	0.018	0.016


Table 5 - Suggested emission factors for WWTP with more than one core technology, without sludge removal

¹⁾ According to Sperling (2005).

²⁾ Adopted based on similarity with the other processes.

³⁾ For these combinations of technologies, the user must calculate an average methane EF from Equation 2 since there is frequent removal of sludge.

To facilitate the decision process on which equation or table to adopt, use the following decision tree:

How to choose an emission factor for discharge (using Tiers)

In the IPCC (2006; 2019), a tier represents a level of **methodological complexity**. Usually, three tiers are mentioned in IPCC. Tier 1 is the basic method, Tier 2 intermediate and Tier 3 most demanding in terms of complexity and data requirements. Tiers 2 and 3 are sometimes referred to as higher tier methods and are generally considered to be more accurate.

In practice with the ECAM tool, the Tier concept will be used for the **selection of emission factors used to calculate wastewater discharge emissions**, which are generated in the <u>Wastewater Collection</u>, <u>Treatment</u>, and <u>Onsite Sanitation stages</u>. In this case, "Tier" can be understood as "**Level of Information**" related to:

- 1. Level of activity data that make up the equation for which the emission factor will be applied.
- 2. Level of information that the utility has about the water body where the discharge is taking place.

Table 6 presents the Tier options to be chosen when selecting the wastewater discharge EF, based on the activity data and water body level of information. To select the tier of the first column, <u>all</u> **requirements** of the columns in the corresponding row must be met.

Once the users have defined the Tier in which their wastewater discharge data is located, it is possible to select the emission factor within the options in the dropdown menu.

For example, if the user is in a dropdown menu for the definition of a CH₄ emission factor for wastewater discharge in the Treatment Stage, with the following data:

- The utility does not have effluent BOD load data, and therefore is using ECAM estimations (Tier 1).
- The utility knows that the discharge is carried out over a specific river (Tier 2).

In the example above, not all conditions were met to select the Tier 2 option (it would be necessary to have a more precise BOD load data), and therefore the Tier 1 option is selected in the dropdown menu. The exercises in this User Manual will address in practice this selection.

Table 6 - Choosing Wastewater Discharge emission factors based on Tiers (Level of Information)

	Level of	Information
Chosen Tier	When defining <u>CH₄ emission</u> factors for wastewater discharge:	When defining N ₂ O emission factors for wastewater discharge:
scaled from a particular source, which will not respond to local		studies carried out.
changes. No information about the water body is known.		Water body: There is no need for the utility to know which type of water body the wastewater is discharged nor if this body is impacted by nutrients or it is in hypoxic conditions.
	Effluent BOD₅ load: Defined based on country-specific studies or on local monitoring by the utility (in this second case, the utility must consider uncertainties such as gaps in data sets). Water body: The utility must know to what type of water body is discharged the wastewater, i.e., if it is a river, estuary, lake, etc.	Not applicable, because the selection of the N_2O emission factors do not include a Tier 2.
Tier 3 Methodologically, the data are scaled from country-specific calculations or local monitoring. The necessary information about	Not applicable, because the selection of the CH ₄ emission factors do not include a Tier 3.	Defined based on country-specific studies or on local monitoring by the utility (in this second case, the utility must consider uncertainties such as gaps in data sets).
the water body is known.		Water body: The utility must know the water body and know if it is impacted by nutrients and/or in hypoxic conditions.

Section 5: Case Scenario examples

This topic presents practical examples of using the ECAM tool to calculate GHG emissions in the Urban Water Sector. The solution of these cases is provided step-by-step using screenshots.

This topic is a preparation for practicing the exercises in the next topic.

Calculate emissions from a water pumping facility in the Abstraction Stage

The management of the Urban Water Utility "Hope" is thinking about which mitigation measures should be prioritized this year.

To gather more information, the manager asked the team to account for emissions from the water pumping facility used for ABSTRACTION in the hypothetical city of Turbalina, in Peru. After consulting their database, the technicians found the following information:

- The pumping system consumed **4,150,000 kWh/year** from the grid.
- The backup power supply system for the pumps is made up of two gasoline engines. These motors operated a few days throughout the year due to network failure or scheduled maintenance. In total, **52,000 liters of gasoline** were consumed in the year.

Now, in ECAM we are going to estimate the emissions related to **electricity (indirect)** and **fuel engines**.

To do the calculations, let's prepare the ECAM Configuration tab:

- 1. Select **the most recent IPCC GWP Report**, since there are no requirements for using older versions.
- 2. Choose the name of your assessment.
- 3. Choose the evaluation period from 01/01/2021 to 01/01/2022.
- 4. Choose "**Peru**" as your country.
- 5. Change the **electricity emission factor** to **0.1562 kg CO_{2eq}/kWh**, since we have this information from official institutions.
- 6. Change the **BOD₅ generation factor** for wastewater to **50 g per person per day**, since we have this information from official institutions.
- 7. Change the value of the **non consumed protein added to wastewater factor to 1**, since we have this information from official institutions.

		Report IPCC 5th A	R (2014/2013) CCF 🗸	More info
	Assessment period GHG (kg	CO2eq) Energy (kWh) Substages	Options
Turbaline city	2021-01-01 2022-01-01 (365 days) 0	0	0 sett	ings duplicat
From: 01/01/2021 D To: 01/ Country Select Peru	 ✓ 4 info 			
Currency (3 letters code)		PE	N	Currency
Emission factor for grid electricity		m 5	0,1562	kg _{CO2} /kWh
Annual protein consumption per o	apita	more info	26,128598	kg/person/ye
Annual protein consumption per c				_
BOD ₅ generation (wastewater)		^m 6	50	g/person/day
			50 1,25	g/person/day kgN/kgN
BOD ₅ generation (wastewater)	harged protein into the sew			
BOD ₅ generation (wastewater) Industrial and commercial co-disc	harged protein into the sew	er more info	1,25	
BOD ₅ generation (wastewater) Industrial and commercial co-disc Non consumed protein added to t Additional Nitrogen from househo	harged protein into the sew	more info	1,25 1	kgN/kgN

As a next step, let's access the inventory. Then click on "create substage" under Abstraction, which is what we'd like to assess.

	Home	Configuration	Inventory	Results Co	ompare assessments	More
	Inventory: s	stages of the	urban water	cycle		
		0	Water supp			0
	(0) Abs	traction	Treatment (0)	Distribution (0)		ction
	~no subst	ages ~	no substages	~no substage	es ~no substag	ges ~no su
Create the	Total Abstraction	n: 0 kgCO ₂ eq Tot	al Treatment: 0	Total Distribution: 0	kgCO2eq Total Collection: 0	kgCO ₂ eq Total Tre
substage under Water	+ create su	bstage + c	reate substage	+ create substa	age + create subs	tage + create
Abstraction	Water su	ipply				

We will need to fill in the data we have to estimate the emissions.

1. Fill in the energy consumption from the grid for the whole year. The Emission factor for grid electricity was defined in the general factors section.

- 2. Activate the option to calculate emissions for onsite fuel engines.
- 3. Fill in the information about onsite fuel consumption. Remember to choose the type of fuel, which in this case is Gasoline.

Water supply > Abstraction > Abstraction 1 change substage name							
Show all inputs GHG Emissions (5) Pump Efficiency (12) Energy Performance (12) Costs (2)							
INPUTS Enter the values for this stage	Fill in the values			Highlight mode			
Volume of abstracted water wsa_vol_conv	provided by the		0	m3 🗸			
Energy consumed from the grid wsa_nrg_cons	exercise		1 4,150,000	kWh 🗸			
Emission factor for grid electricity wsa_conv_kwh		Estimation: 0.16 kgCO2eq/kWh	0.16	kgCO ₂ eq/kWh			
▼ Do you have fuel engines?	2	⊙ No ⊙ Yes					
Fuel type (engines) wsa_fuel_typ		3	(1) Gasoline/Petrol 🗸				
Volume of fuel consumed wsa_vol_fuel			52,000	L			

The resulting GHG emissions can be checked in the Outputs section. Click on "show outputs".

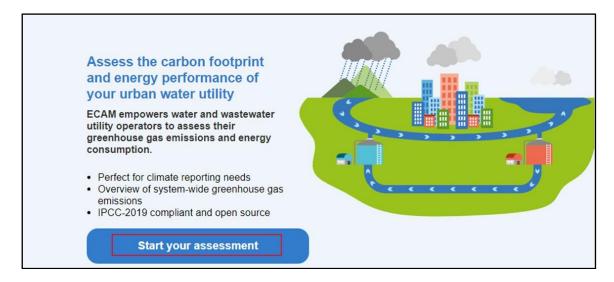
Water supply > Abstraction > Abstraction 1 Change	substage name			
Show all inputs GHG Emissions (5) Pump Efficiency (12) Energy	Performance (12) Costs (2)		
NPUTS Enter the values for this stage			Highlight mode	show outputs
Volume of abstracted water wsa_vol_conv		0	m3 🗸	
Energy consumed from the grid		4,150,000	KWh 🗸	
Emission factor for grid electricity vsa_conv_lwh	Estimation: 0.16 kgCO2eq/kWh	0.16	kgCO ₂ eq/kWh	
▼ Do you have fuel engines?	● No ● Yes			
Fuel type (engines) vsa_fuel_typ		(1) Gasoline/Petrol 🗸		
Volume of fuel consumed		52,000	LV	

The Outputs section shows the results of the requested calculations. In the image below, we can see the result for the emissions referring to **Electricity from the grid (648,230 kg CO_{2eq})**, **Fuel Engines (118,612 CO_{2eq})**, and **Total Emissions in Water Abstraction (766,842 CO_{2eq})**.

OUTPUTS — hide outputs GHG emissions kgC0_2eq kgC0_2eq/year		
	Value	Σ sum (1 substages) Unit
Electricity (indirect) wsa_KPI_GHG_elec	648,230	648,230 kgCO ₂ eq
Fuel engines wsa_KPI_GHG_fuel	118,612	118,612 kgCO ₂ eq
Total GHG water abstraction wsa_KPI_GHG	766,842	766,842 kgCO ₂ eq

The same results could be inspected in the "Results - Summary" tab.

ECAM Energy Performance and Carbon En	nissions Assessment and Monitoring Tool			v3.0.0
Home Configuration Inventory R	esults Compare assessments	More		
			Summary Sankey diagram	Report
Summary: GHG emissions and energy of	consumption			
Table Charts GHG Charts Energy	Charts Serviced population			
	Energy		Show emissions in CO ₂	, CH₄ and N₂O ● No ○ Yes
Total (kgCO ₂ eq)	System (kgCO2eq)	Stage (kgCO2eq)	Emission source	Emission (kgCO ₂ eq)
CO2	Water supply 766,842	Abstraction 766,842	Electricity (indirect) Fuel engines	648,230 118,612
Total GHG emissions 766,842	Sanitation 0			


Calculate emissions from a WWTP

In this case, the proposal is to calculate the **total GHG emissions of a WWTP** composed by a **facultative lagoon**.

Relevant information about the process includes:

- The population serviced by the wastewater treatment system is **100,000 people**.
- The WWTP electricity consumption is entirely from the grid, with a total of **30,000 kWh** in 2021.
- We will not consider removing sludge from processes.
- The treated effluent is **discharged into a river**.

First, start your assessment, or create a new one under the Configuration tab.

Now you will need to prepare the Configuration tab considering the following information:

- 1. Let's use the GWP Report IPCC 5th AR CCF.
- 2. The assessment period will be the full year of 2021.
- 3. The assessment will take place at a facility in Mexico.
- 4. For the general factors, we will keep the values suggested by ECAM, since we don't have local or official factors to replace them.

Configuration						
Load and save file						
List of assessments						
Se	lect Global Warming Po	tential Rep	IPCC 5t	h AR (2014/2	013) CCF 🗸	More info
Mexico WWTP assessment	2021-01-01	HG (kgCO ₂ eq) 13,092,417	Energy (30,0		_	Options tings duplicate
Country Select Mexico	3 More i	nfo				
		nfo				
Currency (3 letters code)				MXN		Currency
Emission factor for grid electricity	1	m	nore info		0,45	kg _{CO2} /kWh
Annual protein consumption per	capita	4	nore info	30,725700	00000003	kg/person/year
BOD ₅ generation (wastewater)			nore info		40	g/person/day
Industrial and commercial co-disc	charged protein into t	he sewer m	nore info		1,25	kgN/kgN
Non consumed protein added to	the wastewater	m	nore info		1,1	kgN/kgN
Additional Nitrogen from househo wastewater	old products added to		nore nfo		1,1	kgN/kgN
	Acc	ess invento				

The next step will be to create a substage within the Wastewater Treatment stage.

Now you must fill in the Input Section according to the data provided by the exercise.

- 1. The population serviced by the wastewater treatment system is **100,000 people**.
- 2. When filling in the serviced population, ECAM will suggest some estimates for the inputs (green squares). These values are also calculated based on the general factors selected in the Configuration tab (for example, from the BOD generated per capita it is possible to calculate the Load of Influent BOD to the WWTP¹⁸). To use estimates, click on the suggested value.

¹⁸ Check more about that in the Methodology Guide.

- 3. We do not have information about the BOD load in the effluent (there is no monitoring in the WWTP). It would be possible to calculate it from the efficiency of our process, but we are not sure about this data either. In this sense, we are going to use the **dropdown menu** offered by ECAM, selecting the technology we have. The lagoon is a primary + secondary process. The software also calculates the value in kg/year.
- 4. If you don't have WWTP affluent monitoring data, you should also use estimation for the Nitrogen load in the influent. **To use estimates, click on the suggested value**.
- 5. Like step 3, we can calculate the Total Nitrogen load in the effluent from the dropdown menu. **Select the "primary + secondary process" option**.
- 6. Considering the technological composition of the treatment process (facultative lagoon), choose the right options in the dropdown menus. A facultative lagoon is also an aerobic treatment.
- 7. The discharge emission factor is defined based on the <u>type of discharge</u> and the <u>level of</u> <u>information</u> that we have:
 - For CH₄ emission factor (discharge):
 - We have information about the water body of discharge, we know it is a specific river (Level 2).
 - The BOD load data used are estimated by ECAM from the efficiency of our process, also based on an influent BOD estimate (Level 1).
 - Based on this, choose the factor 0.068.
 - For the N₂O emission factor (discharge):
 - There is information about the water body, but there is no measurement of nutrients (Level 2).
 - Based on this, choose the factor 0.005.
- 8. The WWTP electricity consumption is entirely from the grid, with a total of **30,000 kWh** in 2021.
- 9. The emissions factor for grid electricity comes from the General factors in the Configuration tab.

INPUTS	
Enter the values for this stage	Highlight mode
Serviced population	
wwt_serv_pop	100,000 people
	mation: 7,300,000 m ³ 7,300,000 m3 V
wwt_vol_trea	
Volume of discharged effluent to water body Use to water water body Estin Wwt_vol_disc	mation: 7,300,000 m ³ 7,300,000 m3 V
	mation: 1.450.000 km
wwt_bod_infl	mation: 1,460,000 kg 1,460,000 kg 🗸
Effluent BOD ₅ load	
vwt_bod_eff	219,000 kg 🗸
Primary + Secondary (biological treatment plants) [15 %] (219,000 kg)	
Total Nitrogen load in the influent	4 743,562 kg ▼
Total Nitrogen load in the effluent	
wwt tn effl	446,137 kg 🗸
Primary + Secondary (biological treatment plants) [60 %] (446,137 kg)	×
CH ₄ emission factor (treatment)	
wwt_ch4_efac_tre Anaerobic shallow lagoon and facultative lagoons (<2m depth) (0.12)	0.12 kgCH ₄ /kgBOD
N ₂ O emission factor (treatment) wwt_n2o_efac_tre	0.016 kgN ₂ O-N/kgN
Centralised, aerobic, treatment plant (0.016)	~
CH ₄ emission factor (discharge)	
wwt_ch4_efac_dis Discharge to aquatic environments (Tier 1) (0.068)	0.068 kgCH ₄ /kgBOD
N ₂ O emission factor (discharge)	
wwt_n2o_efac_dis	0.005 kgN ₂ O-N/kgN
Freshwater, estuarine, and marine discharge (Tier 1) (0.005)	~
Energy consumed from the grid wwt_nrg_cons	8 30,000 KWh 🗸
Enhistori for grid electricity	2. 0.45 kgCO ₂ eq/kWh 9 0.45 kgCO ₂ eq/kWh
Sludge removed from wastewater treatment (dry weight)	
wwt_mass_slu	0 kg 🗸
Type of treatment undefined → [0 gSS/inhabitant/day] → (0 kg)	
BOD ₅ removed as sludge wwt.bod.slud	0 kg 🗸
Mechanical treatment plants (primary sedimentation sludge) \rightarrow [0.5 kgBOD/kg dry mass sludge] \rightarrow (0 kg)	×

The Outputs section shows the results of the calculations.

change substage name	Resident population Population connected to so & Serviced population Population with onsite sar Population with open defect	200,000 nitation 0
) Pump Efficiency 🛛 Sludge Management 0) (41)	Energy Performance (14)	Costs (2)
Highlight mode people Click to open the Output section		

In the image below, we can see the result for the emissions referring to **Total GHG wastewater treatment (11,901,057 kg CO**_{2eq}).

OUTPUTS — (hide outputs)			
GHG emissions			
kgCO2eq kgCO2eq/year kgCO2eq/year/serv.pop.			
	Value	Σ sum (1 substages) Unit	
Electricity (indirect) wwt_KPI_GHG_elec	13,500	13,500 kgCO ₂ eq	
Treatment process wwt_KPI_GHG_tre	10,336,631	10,336,631 kgCO ₂ eq	
Biogas (anaerobic digestion of sludge) wwt_KPI_GHG_biog	0	0 kgCO ₂ eq	
Fuel (digester) wwt_KPI_GHG_dig_fuel	0	0 kgCO ₂ eq	
Sludge management wwt_KPI_GHG_slu	0	0 kgCO ₂ eq	
Discharged water wwt_KPI_GHG_disc	1,550,926	1,550,926 kgCO ₂ eq	
Total GHG wastewater treatment wwt_KPI_GHG	11,901,057	11,901,057 kgCO ₂ eq	

Sludge Anaerobic Digester vs Landfilling

This case presents a proposal for calculating avoided GHG emissions in recent years, coinsidering that a utility makes a switch from **Landfilling** sludge to **Anaerobic Digestion** at the Wastewater Treatment Plant.

We will consider:

- The analysis will be between **01/01/2016 to 01/01/2021**.
- The amount of sludge produced during this entire period was **23,675 tons in dry weight**. This data was obtained by operational monitoring.

Start by performing the General Setup on the Configuration tab:

- 1. Let's use the GWP Report IPCC 5th AR CCF.
- 2. Select the entire evaluation period.
- 3. Select the country where the facility is located, which is Peru.
- 4. There is no local data for the general factors, so we will use the ECAM suggestions based on the IPCC.

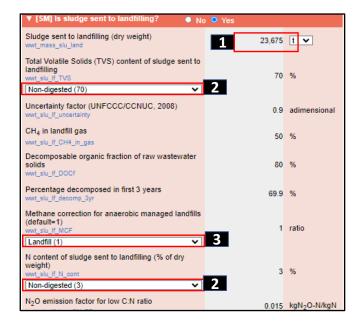
Lad and save file List of assessments Select Global Warming Potential PCC 5th AR (2014/2013) CCF More information of the (MgCO) etc. Assessment period OHG (MgCO) etc. Contary Others Tot: (01/01/2021) 99,267,834 0 1 Contary Others Other	onfiguration						
List of assessments Select Global Warming Potential PCC Sth AR (2014/2013) CCF More info Assessment period OHG (kgCO ₂ eq) Energy (kWh) Substages Options Ottom 2016-01-01 (1227 days) 99,267,834 0 1 ettings duplicate Assessment period From: @1/01/2021 1.827 days Country Select Peru Gurrency (3 letters code) From: @1/01/2021 1.827 days BOD ₅ generation (wastewater)	-						
Select Global Warming Potential 1 IPCC 5th AR (2014/2013) CCF v More info Assessment period OHG (kgCO_ce) Energy (KWh) Substages Options 2016-01-01 99,267,834 0 1 Settings duplicate Change assessment name Assessment period From: [g1/g1/2016] To: [g1/g1/2021] 1,827 days 2 Country Select Peru 3 re info Currency Select Peru 3 re info 0,424 kgCo_g/kWh Annual protein consumption per capita more info 0,424 kgCo_g/kWh BOD ₆ generation (wastewater) More info 1,25 kgN/kgN Non consumed protein added to the wastewater more info 1,1 kgN/kgN Additional Nitrogen from household products added to the wastewater 1,1 kgN/kgN							
Assessment period 0HG (kgC0_ze0) Energy (kWh) Substages Options 2016-01-01 2021-01-01 (1.827 days) 99.267,834 0 1 settings duplicate change assessment name Assessment period From: @1/@1/2016] To: @1/@1/2021] 1.827 days 2 Country Select Peru 3 re info Currency (3 letters code) PEN Currency more info 0.424 kgC0_z/kWh Annual protein consumption per capita BOD ₅ generation (wastewater) Non consumed protein into the sewer Non consumed protein added to the wastewater Non consumed protein added to the wastewater Access inventory Comments	List of assessments			4			
Landfilling 2016-01-01 2021-01-01 (1.827 days) 99,267,834 0 1 settings duplicate change assessment name Assessment period Image: Setting and the sett		Select Globa	I Warming Potential		CC 5th AR (2014/	2013) CCF 🗸	More info
Landfilling 2021-01-01 (1.827 days) 99,267,834 0 1 settings duplicate change assessment name Assessment period From: 01/01/2016 To: 01/01/2021 1,827 days 2 Country Select Peru 3 re info 0 0,424 kg _{CO2} /kWh Currency (3 letters code) PEN Currency Currency Belot for grid electricity more info 0,424 kg _{CO2} /kWh Annual protein consumption per capita more info 26,128598 kg/person/year BOD ₆ generation (wastewater) Industrial and commercial co-discharged protein into the sewer 4 iore info 1,1 kgN/kgN Non consumed protein added to the wastewater more info 1,1 kgN/kgN more info 1,1 kgN/kgN Additional Nitrogen from household products added to the wastewater more info 1,1 kgN/kgN More info 1,1 kgN/kgN More info 1,1 kgN/kgN more info 1,1 kgN/kgN		Assessment period	GHG (kgCO ₂ eq)	Energy (k	Nh) Substages		Options
Assessment period From: 01/01/2016 To: 01/01/2021 Select Peru Select Peru Select Peru Emission factor for grid electricity more info Annual protein consumption per capita more info BOD ₅ generation (wastewater) 40 Industrial and commercial co-discharged protein into the sewer 1.25 Non consumed protein added to the wastewater more info Additional Nitrogen from household products added to the wastewater 1.1 kgN/kgN Additional Nitrogen from household products added to the wastewater		2021-01-01	99,267,834	0	1	settings	duplicate
From: 01/01/2016 To: 01/01/2021 1,827 days 2 Country Select Peru 3 re info Currency (3 letters code) Emission factor for grid electricity more info 0,424 kg_Co2/kWh Annual protein consumption per capita more info 26,128598 kg/person/year BOD ₅ generation (wastewater) more info 1,25 kgN/kgN Industrial and commercial co-discharged protein into the sewer 1,1 kgN/kgN Non consumed protein added to the wastewater more info 1,1 kgN/kgN Additional Nitrogen from household products added to the wastewater more info 1,1 kgN/kgN	change assessment name						
From: 01/01/2016 To: 01/01/2021 1,827 days 2 Country Select Peru 3 re info Currency (3 letters code) Emission factor for grid electricity more info 0,424 kg_Co2/kWh Annual protein consumption per capita more info 26,128598 kg/person/year BOD ₅ generation (wastewater) more info 1,25 kgN/kgN Industrial and commercial co-discharged protein into the sewer 1,1 kgN/kgN Non consumed protein added to the wastewater more info 1,1 kgN/kgN Additional Nitrogen from household products added to the wastewater more info 1,1 kgN/kgN	Assessment period						
Select Peru 3 re info Currency (3 letters code) PEN Currency Emission factor for grid electricity more info 0.424 kg_Co2/kWh Annual protein consumption per capita more info 26,128598 kg/person/year BOD ₅ generation (wastewater) more info 40 g/person/day Industrial and commercial co-discharged protein into the sewer 4 core info 1,25 kgN/kgN Non consumed protein added to the wastewater more info 1,1 kgN/kgN Additional Nitrogen from household products added to the wastewater more info 1,1 kgN/kgN		/ 2021 🗂 1,827 da	ays 2				
Select Peru 3 re info Currency (3 letters code) PEN Currency Emission factor for grid electricity more info 0.424 kg_Co2/kWh Annual protein consumption per capita more info 26,128598 kg/person/year BOD ₅ generation (wastewater) more info 40 g/person/day Industrial and commercial co-discharged protein into the sewer 4 iore info 1,25 kgN/kgN Non consumed protein added to the wastewater more info 1,1 kgN/kgN Additional Nitrogen from household products added to the wastewater more info 1,1 kgN/kgN							
Emission factor for grid electricity more info 0,424 kg _{CO2} /kWh Annual protein consumption per capita more info 26,128598 kg/person/year BOD ₅ generation (wastewater) more info 40 g/person/day Industrial and commercial co-discharged protein into the sewer 4 rore info 1,25 kgN/kgN Non consumed protein added to the wastewater more info 1,1 kgN/kgN Additional Nitrogen from household products added to the wastewater more info 1,1 kgN/kgN		v 3 re info	\overline{O}				
Annual protein consumption per capita more info 26,128598 kg/person/year BOD ₅ generation (wastewater) more info 40 g/person/day Industrial and commercial co-discharged protein into the sewer 1,25 kgN/kgN Non consumed protein added to the wastewater more info 1,1 kgN/kgN Additional Nitrogen from household products added to the wastewater more info 1,1 kgN/kgN	Currency (3 letters code)				PEN		Currency
BOD ₅ generation (wastewater) more info 40 g/person/day Industrial and commercial co-discharged protein into the sewer 40 g/person/day Non consumed protein added to the wastewater more info 1,25 kgN/kgN Additional Nitrogen from household products added to the wastewater more info 1,1 kgN/kgN Access inventory	Emission factor for grid electricity			more info		0,424	kg _{CO2} /kWh
Industrial and commercial co-discharged protein into the sewer 4 iore info 1,25 kgN/kgN Non consumed protein added to the wastewater more info 1,1 kgN/kgN Additional Nitrogen from household products added to the wastewater more info 1,1 kgN/kgN Access inventory	Annual protein consumption per capi	ta		more info		26,128598	kg/person/year
Non consumed protein added to the wastewater more info 1,1 kgN/kgN Additional Nitrogen from household products added to the wastewater more info 1,1 kgN/kgN	BOD ₅ generation (wastewater)			more info		40	g/person/day
Additional Nitrogen from household products added to the wastewater more info	Industrial and commercial co-dischar	ged protein into the s	sewer 4	iore info		1,25	kgN/kgN
Access inventory Comments	Non consumed protein added to the	wastewater		more info		1,1	kgN/kgN
Comments	Additional Nitrogen from household p	products added to the	e wastewater	more info		1,1	kgN/kgN
Comments		_					
	Comments		Access invento	ory			
							,

Landfill

First, we are going to generate an assessment (scenario) considering that **there is no anaerobic sludge digester**. For this, it is also important to indicate the methane emission factor of the wastewater treatment, because a reduction in the organic load due to the removal of BOD₅ must be considered.

In this case, the sludge management will consider that undigested sludge is sent to a sanitary landfill, where there is no recovery or burning of biogas, which is emitted directly into the atmosphere.

Initially you must:


- 1. Fill in the CH₄ emission factor from wastewater treatment.
- 2. Fill in the amount of sludge produced in the WWTP (dry weight).

3. Select the option "aerobic treatment plants with primary treatment (mixed primary and secondary sludge, untreated or treated aerobically).

		N ₂ O emission factor (treatment)		
Serviced population wwt_serv_pop	0 people	wwt_n2o_efac_tre Type of treatment undefined (0)	0	kgN ₂ O-N/kgN
Volume of treated wastewater Estimation: 0 m ³ wwt_vol_trea	0 m3 🗸	CH ₄ emission factor (discharge) wwt_ch4_efac_dis	0	kgCH ₄ /kgBOD
Volume of discharged effluent to water body Estimation: 0 m ³ wwt. vol. disc	0 m3 🗸	Discharge undefined (0) V N ₂ O emission factor (discharge)		
Influent BOD ₅ load Estimation: 0 kg	0 kg 🗸	wwt_n2o_efac_dis Discharge undefined (0)	0	kgN ₂ O-N/kgN
Effluent BOD ₅ load	0 kg 🗸	Energy consumed from the grid	0	kWh 🗸
Untreated systems [100 %] (0 kg)		Emission factor for grid electricity Estimation: 0.18 kgCO2eq/kWh wwt_conv_kwh	0.16	kgCO ₂ eq/kWh
wwt_tn_infl Total Nitrogen load in the effluent	0 kg 🗸	Sludge removed from wastewater treatment (dry weight) www.mass_slu	2 23,675	tv
wwt_tn_effl Untreated systems [100 %] (0 kg)	0 kg 🗸	Custom value		
CH ₄ emission factor (treatment)	0.018 kgCH ₄ /kgBC	unit had also	18,940,000 3	kg 🗸

Then, in the question "Evaluate sludge management?" choose "Yes", and in the question "Is sludge sent to landfilling?" choose "Yes".

- 1. Enter the same amount of sludge generated in the field "sludge sent to a landfill (dry weight)"
- 2. Choose the "Non-digested" option in "Total Volatile Solids (%)" and "N content of sludge (% dry weight)".
- 3. In "Methane correction for anaerobically managed landfills", select "Sanitary Landfill" option.

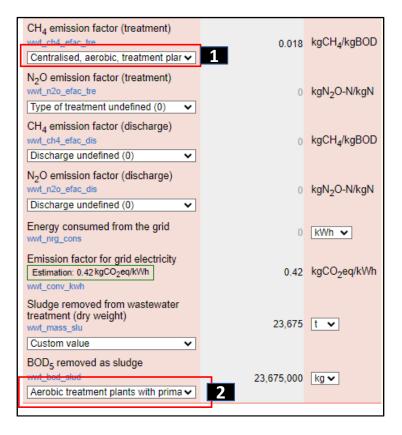
The Outputs section shows the results of the requested calculations.

		Population with onsite s Population with open def		0
Pump Efficiency)	Sludge Management (41)	Energy Performance (14)	Costs (2)	
Highlight mode people Click to d	ppen the Output section			

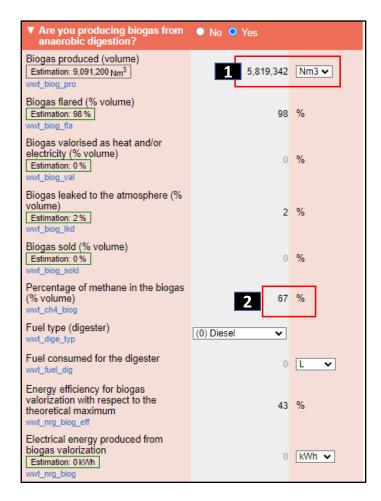
In the image below, we can see the result for the emissions referring to **Total GHG wastewater** treatment (99,267,834 kg CO_{2eq}).

Sludge management wwt_KPI_GHG_slu	110,859,114	110,859,114 kgCO2eq
Discharged water wwt_KPI_GHG_disc	0	0 kgCO ₂ eq
Total GHG wastewater treatment wwt_KPI_GHG	99,267,834	99,267,834 kgCO ₂ eq

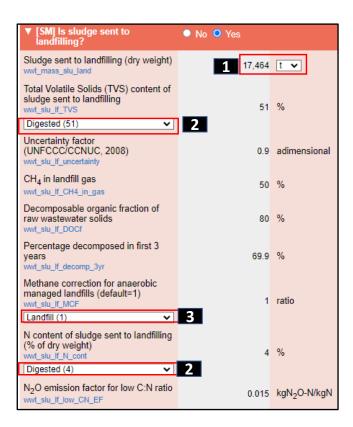
Sludge Digester


Additional information about the Sludge Digester include:

- The amount of sludge sent to the landfill is reduced by treatment in the anaerobic digester. According to the operational reports we can assume a reduction of the total solids of **26.24%**. Therefore, we are now going to consider sending only **17,464 tons of digested sludge** to the landfill instead of the 23,675 tons in the previous assessment/scenario.
- Since the anaerobic sludge digester produces biogas with a methane concentration of 67%, we also need to determine the GHG emissions from losses to the atmosphere. We can assume a biogas production of 5,819,342 Nm³, at normal conditions (N) of pressure (P = 1 atm.) and temperature (T = 0°C), during the 5 years; and that 98% of the production is burned and 2% is lost or released into the atmosphere.


To make the comparison, we are going to duplicate the evaluation/scenario (without anaerobic digester) generated above.

Configuration	Inventory	Results	Compare assessments	More			You are editing Lar 99,267,834 kgCO ₂ eq	
Configura ► Load and								
 List of as 	sessments							
			Select Globa	I Warming Potential	Report IPCC 5	th AR (2014/	2013) CCF 🗸 🥂	ore info
			Assessment period	GHG (kgCO ₂ eq)	Energy (kWh)	Substages	Option	5
🖉 Lan	dfilling		2016-01-01 2021-01-01 (1,827 days)	99,267,834	0	1	settings	licate
C	hange assessm	ent name						


- 1. Keep the methane emission factor from the wastewater treatment and the amount of sludge produced in the WWTP (dry weight).
- 2. Change the BOD₅ removed as sludge to "aerobic treatment plants with primary treatment and anaerobic digestion of sludge (mixed primary and secondary sludge, treated anaerobically)".

- 1. In relation to biogas production, fill in the amount of **5,819,342** Nm³ for the 5 years.
- 2. Keep the percentages of biogas burned, biogas released into the atmosphere and change the percentage of methane in the biogas to 67%.

- 1. Enter the new amount of digested sludge in the "sludge sent to landfilling (dry weight)" field
- 2. Choose the "Digested" option in "Total Volatile Solids (% dry weight)" and "N content".
- 3. In the "Methane correction for anaerobically managed landfills" field, select the "Landfill" option.

The emission results can also be displayed at the Output Section. In the image below, we can see the result for the emissions referring to **Total GHG wastewater treatment (49,208,213 kg CO_{2eq})**.

Sludge management wwt_KPI_GHG_slu	61,805,180	61,805,180	kgCO ₂ eq
Discharged water wwt_KPI_GHG_disc	0	0	kgCO ₂ eq
Total GHG wastewater treatment wwt_KPI_GHG	49,208,213	49,208,213	kgCO ₂ eq

As a conclusion, we know that without an anaerobic sludge digester, the sludge management system generated 99,267,834 kgCO_{2eq}. With the implementation of the anaerobic sludge digester, the system generates 49,208,213 kgCO_{2eq}. **There is a reduction of 50,059,621 kgCO_{2eq}**.

Section 6: Putting into practice: proposed case exercises

Calculate emissions from a water pumping facility in the Distribution Stage

The management of an Urban Water Utility in Guatemala saw your results obtained on the emissions from the Water Abstraction (refer to *Calculate emissions from a water pumping facility in the Abstraction Stage*) stage when you were working at the Water Utility "Hope".

There is now also interest in assessing the GHG emissions from the **Water Distribution stage** pumping system located in another city: the **Memory City, in Guatemala**.

Types of emissions that will be considered in this exercise:

- Electricity (indirect).
- > Fuel Engines.

After consulting the database, the technicians found the following information:

- The pump system consumed **1,500,000 kWh/year** from the grid.
- The backup power supply system for the distribution pumps is made up of **onsite diesel engines**. These engines operated a few days throughout the year due to grid failures or scheduled maintenance. In total, **20,000 liters of diesel** were consumed in 2021.

Start by performing the General Setup on the Configuration tab:

- 5. Select the entire year of 2021 as the evaluation period.
- 6. Let's use the GWP Report IPCC 5th AR CCF.
- 7. Select the country where the facility is located.
- 8. There is no local data for the general factors, so we will use the ECAM suggestions based on the IPCC.

Answer the following questions:

- A. How much GHGs are generated in **Electricity (indirect)**, **Fuel engines**, and **Total GHG** water distribution in CO_{2eq}?
- B. The utility would also like to know how many kg of CO equivalent are generated per year by each inhabitant served by the distribution system. This result will be used for benchmarking with other utilities. The population serviced is 50,000 inhab.

Calculate emissions from a WWTP

In this exercise, the proposal is to calculate the **GHG emissions of a WWTP** that uses a process composed of an **anaerobic lagoon** followed by a **facultative lagoon** in the treatment of wastewater.

Types of emissions that will be considered in this exercise:

- Emissions from Electricity (indirect).
- Emissions from Treatment.
- Emissions from Discharged Water.

Relevant information about the process includes:

- The population serviced by the wastewater treatment system is **200,000 people**.
- The WWTP electricity consumption is entirely from the grid, with a total of **140,000 kWh** in 2021.
- Considering the technological composition of the treatment process (anaerobic + facultative lagoons) a methane emission factor of 0.540 kgCH₄/kgBOD should be assumed. The average nitrous oxide emission factor for the treatment is 0.013 kgN₂O-N/kgN. Check the topic "How to choose an emission factor for treatment if my WWTP has two or more core technologies" to understand this choice.
- We will not consider removing sludge from processes.
- The treated effluent is **discharged into a river**.

Start by performing the General Setup on the Configuration tab:

- 1. Let's use the GWP Report IPCC 5th AR CCF.
- 2. The assessment period will be the full year of 2021.
- 3. The assessment will take place at a facility in the United States.
- 4. In the USA around 50% of the food waste is disposed of in sewers through the sinks, so the Non consumed protein added to the wastewater is higher. Let's consider a value of 1.13, according to IPCC table 6.10A (Volume 5, 2009).
- 5. For the other General factors, we will keep the values suggested by ECAM, since we don't have local or official factors to replace them.

Answer the following questions:

- A. How much is the **total GHG emissions** generated in the Wastewater Treatment Stage (**treatment + discharge + electricity**)?
- B. How much is the GHG emission of the Wastewater Treatment Stage **per serviced population (treatment + discharge + electricity)**?
- C. Which of the considered gases carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) generate the most significant GHG emissions and how much is their corresponding emission in CO_{2eq} (treatment + discharge + electricity)?

Conduct a complete assessment of an Urban Water Utility

The Urban Water Utility "Visionary Water (VW)" is preparing an inventory of greenhouse gas emissions from the systems it operates, which include water and sanitation facilities. VW must therefore assess its main sources of GHG emissions.

 Types of emissions that will be considered in this exercise: ➢ Water Abstraction, Treatment, and Distribution: ○ Emissions from Electricity (indirect) and Fuel engines.
 Sanitation Collection: Emissions from Discharge to water body (untreated)
 Sanitation Treatment: Emissions from Electricity (indirect).
• Emissions from Treatment process and from Discharged water.
• Emissions from Biogas (anaerobic digestion of sludge)

Relevant information was accessed in the urban water utility database. They were organized according to each stage of the ECAM tool:

- Water Abstraction:
 - The system is composed of pumps and equipment transporting water from a river using energy from the grid. In the year 2019, the system consumed **3,200,000 kWh** of electrical energy. The backup power supply system consists of **gasoline engines** and consumed **65,000 liters** in the year 2019.
- Water Treatment:
 - The drinking water treatment system consumed **850,000 kWh** of electrical energy from the grid in the year 2019. The backup system is also composed of gasoline engines and consumed **10,000 liters** in the same year.
- Water Distribution:
 - The system is composed of boosters that supply additional pressure when necessary. It consumed 3,800,000 kWh in the year 2019. The backup power supply system consists of **diesel engines** and consumed **22,000 liters** in the year 2019.
- Sanitation Collection:
 - \circ The population connected to the sewer system is **150,000 people**.
 - VW wants to include in the scope the emissions related to the Discharge to water body (untreated), since part of the collection system is not yet connected to a wastewater treatment plant. 15% of the volume of collected wastewater is not yet being treated and is being discharged into water bodies about which the utility has no information.

- The sanitation collection system is **100% gravitational.** Electricity consumption will not be considered.
- Sanitation Treatment:
 - 85% of the 150,000 people connected to the sewer system are being serviced by the WWTP.
 - The **technology** adopted at the WWTP is activated sludge, a **centralized aerobic treatment system composed of primary + secondary treatment**.
 - The WWTP electricity consumption is entirely from the grid, with a total of **4,100,000 kWh** in 2019.
 - The treated wastewater is discharged to River Melbourne.
 - The operational control shows that the system **produced 3,000 tonnes of sludge (dry weight) in 2019**.
 - The sludge is treated anaerobically in a sludge digester that produces biogas with 65% metered (measured) methane concentration, where 98% of the production is flared and approximately 2% is lost or released to the atmosphere. The digested sludge is sent to landfilling.
 - Sludge emissions that occur OUTSIDE of the WWTP, ie, those related to the final disposal of the digested sludge, will not be considered. This decision refers to the scope defined by the utility.

Start by performing the General Setup on the Configuration tab:

- 1. Let's use the GWP Report IPCC 5th AR CCF.
- 2. The assessment period will be the full year of 2019.
- 3. The assessment will take place in Australia.
- 4. For the General factors, we will keep the values suggested by ECAM, since we don't have local or official factors to replace them.

Answer the following questions:

A. How much GHG emissions are generated for each of the emissions requested by the exercise (CO_{2eq})?

Water Abstraction	Electricity (indirect)	
Water Abstraction	Fuel engines	
Water Treatment	Electricity (indirect)	
water freatment	Fuel engines	
Water Distribution	Electricity (indirect)	
Water Distribution	Fuel engines	
Sanitation Collection	Discharge to water body	
Sanitation conection	(untreated)	
	Electricity (indirect)	
	Treatment process	
Sanitation Treatment	Biogas (anaerobic digestion of	
	sludge)	
	Discharged water	

- B. Is the greater consumption of electrical energy associated with the Utility's Water supply or Sanitation systems? Rank the stages according to the highest energy consumption (in CO_{2eq}) in the reference year.
- C. Which gas has the greatest absolute representation of emissions for the utility (in CO_{2eq})? And which gas has the highest unitary generation and in which stage (in CO_{2eq})?

Results for the proposed exercises

Calculate emissions from a water pumping facility in the Distribution Stage

The first thing to do is to prepare the Configuration tab according to the specifications.

- 1. Select the GWP Report IPCC 5th AR CCF.
- 2. Select the name of your assessment.
- 3. Select the assessment period to consider the full complete year of 2021. Remember to choose it from the 1st of January to the 1st of January.
- 4. Select the country where the facility is located (Guatemala)
- 5. There is no local data for the general factors, so we will use the ECAM suggestions.

Configuration				
Load and save file				
▼ List of assessments				
Se	elect Global Warming Potential Repo	t IPCC 5th AR	R (2014/2013) CCF	More info
	Assessment period GHG (kgCO ₂ e	q) Energy (kWh)		Options
Memory city	2022-01-01 2,459,212 (365 days)	4,150,000	1 -	ettings luplicate
change assessment name				
Assessment period	/01/2022 🗂 365 days			
	./01/2022 [] 305 days			
Select Guatemala	v 4 pre info		- 5	
Currency (3 letters code)		GTO		Currency
Emission factor for grid electricity	y .	more info	0,564	kg _{CO2} /kWh
Annual protein consumption per	capita	more info	23,166842	kg/person/year
BOD ₅ generation (wastewater)		more info	40	g/person/day
Industrial and commercial co-dis	charged protein into the sewer	more info	1,25	kgN/kgN
Non consumed protein added to	the wastewater	more info	1	kgN/kgN
Additional Nitrogen from househ wastewater	old products added to the	nore nfo	1,1	kgN/kgN
	Access inver	ntory		

As a next step, let's access the Inventory tab and create a substage in the Distribution stage.

Home	Configuration	Inventory	Results	Compare assessments	More	
Inventory:	stages of the u	urban water	cycle			
				Water supply		
Ab	estraction (0)		2 r			Distribution (1)
	~no substages			e substage to nput section		Distribution 1 💼 0 kg _{CO24}
	Total Abstraction: 0 kg	CO ₂ eq		Total Treatment: 0 kgCO ₂ eq		Total Distribution: 0 kgCO2eq
	+ create substage	^e Click to	create a	new substage		+ create substage

Within the created substage, it will be necessary to fill in the information:

- 1. The pump system consumed **1,500,000 kWh/year from the grid.**
- 2. The backup power supply system for the distribution pumps is made up of **onsite diesel** engines.
- 3. These engines operated a few days throughout the year due to grid failures or scheduled maintenance. In total, **20,000 liters of diesel** were consumed in 2021.

INPUTS Enter the values for this stage) Highlight mode
Serviced population wsd_serv_pop	0	people
Volume of water injected to distribution wsd_vol_dist	0	m3 🗸
Energy consumed from the grid wsd_nrg_cons	1,500,000	kWh 🖌
Emission factor for grid electricity Estimation: 0.56 kgCO ₂ eq/kWh wsd_conv_kwh	0.56	kgCO ₂ eq/kWh
▼ Do you have fuel engines?	● No ● Yes	
Fuel type (engines) wsd_fuel_typ	(0) Diesel 🗸]
Volume of fuel consumed (engines) wsd_vol_fuel	3 20,000	LV

Now answer the following questions.

A. How much GHGs are generated in **Electricity (indirect)**, **Fuel engines**, and **Total GHG water distribution** in CO_{2eq}?

	Distribution (1)			Collection (0)	(
Distr	ibution 1 🗑 Total Distribution: + create :	0.00	899,733 kg _{CO2} eq	~no substage Total Collection: 0 + create substa	gCO ₂ eq
ubstage name					
(11) 🗆 Energy	Performance (14)	Costs (2)		show outputs	
	0	D H	Highlight mode		-
	0	m3 🗸	Click	o open the Output section	
	1,500,000	kWh 🗸			

The Outputs section shows the results of the requested calculations. In the image below, we can see the result for the emissions referring to Electricity from the grid (846,000 kg CO_{2eq}), Fuel Engines 53,733 CO_{2eq}), and Total Emissions in Water Abstraction (899,733 CO_{2eq}).

OUTPUTS — hide outputs GHG emissions kgCO2eq/year/serv.pop.			
	Value	Σ sum (1 substages)	Unit
Electricity (indirect) wsd_KPI_GHG_elec	846,000	846,000	kgCO ₂ eq
Fuel engines wsd_KPI_GHG_fuel	53,733	53,733	kgCO ₂ eq
Total GHG water distribution wsd_KPI_GHG	899,733	899,733	kgCO ₂ eq

B. The utility would also like to know how many **kg of CO equivalent** are generated **per year by each inhabitant** served by the distribution system. This result will be used for benchmarking with other utilities. The population serviced is 50,000 inhab.

Fill in the population data and change the unit shown in the Output section.

Water supply > Distribution	ON > Distribution 1 Change GHG Emissions (8) Dump Efficience		hange the unit f outputs	Resident popula	ation <mark>0</mark> ation 50,000
INPUTS Enter the values for this stage Serviced population wsd_serv_pop Volume of water injected to distribution	50,000 people	OUTPUTS — hide outputs GHG emissions kgCO ₂ eq kgCO ₂ eq/year Electricity (indirect)	kgCO ₂ eq/year/serv.po Value Σs	um (1 substages	
vsd_vol_dist Energy consumed from the grid vsd_nrg_cons Emission factor for grid electricity Estimation: 0.56 kgCO2eq/KWh	1,500,00 KWh •	Visd_KPL_GHG_elec Fuel engines visd_KPL_GHG_fuel Total GHG water distribution	846,000 53,733 on 899,733	53,733) kgCO ₂ eq 3 kgCO ₂ eq 3 kgCO ₂ eq
wsd_conv_kwh Do you have fuel engines? Evel type (consistent)	Fill in population data	y performance and S	ervice Level indicators	Va	lue Unit
Fuel type (engines) wsd_fuel_typ Volume of fuel consumed (engines) wsd_vol_fuel	(0) Diesel • 20,000 L •	Energy consumption per ve distribution wsd_KPI_nrg_per_vd	olume injected to	~Missing_inp	uts _{KWh/m³}

Once you have changed the units, you can check the updated results in the Outputs section. In the image below, we can see the result for the emissions (kgCO_{2eq}/year/serv.pop) referring to Electricity from the grid (16.92), Fuel Engines (1.07), and Total Emissions in Water Abstraction (17.99).

OUTPUTS — (hide outputs)		
GHG emissions		
kgCO2eq kgCO2eq/year kgCO2eq/year/serv.pop.		
	Value	Σ sum (1 substages) Unit
Electricity (indirect) wsd_KPI_GHG_elec	16.92	16,92 kgCO ₂ eq/year/serv.pop.
Fuel engines wsd_KPI_GHG_fuel	1.07	1.07 kgCO2eq/year/serv.pop.
Total GHG water distribution wsd_KPI_GHG	17.99	17.99 kgCO2eq/year/serv.pop.
	17.99	17.99 kgCO ₂ eq/year/serv.pop.

Calculate emissions from a WWTP

In this exercise, the proposal was to calculate the **GHG emissions of a WWTP** that uses a process composed of an **anaerobic lagoon** followed by a **facultative lagoon** in the treatment of wastewater.

First, start your assessment, or create a new one under the Configuration tab.

Now you will need to prepare the Configuration tab considering the following information:

- 1. Let's use the GWP Report IPCC 5th AR CCF.
- 2. The assessment period will be the full year of 2021.
- 3. The assessment will take place at a facility in the United States.

- 4. In the USA around 50% of the food waste is disposed of in sewers through the sinks, so the Non consumed protein added to the wastewater is higher. Let's consider a value of 1.13, according to IPCC table 6.10A (Volume 5, 2009).
- 5. For the other General factors, we will keep the values suggested by ECAM, since we don't have local or official factors to replace them.

Energy (kWh	h) Substages 0	settings dupli	Options cate
	0	settings dupli	cate
	USD		Currency
more info		0,418	4
more info		33,21208	kg/person/year
more info			g/person/day
more info			kgN/kgN
ore info			9
more info		1,1	kgN/kgN
n 1	nore info nore info pre info	nore info	nore info

The next step will be to create a substage within the Wastewater Treatment stage.

Now you must fill in the Input Section according to the data provided by the exercise.

- 1. The population serviced by the wastewater treatment system is **200,000 people**.
- 2. When filling in the serviced population, ECAM will suggest some **estimates** for the inputs (green squares). These values are also calculated based on the General Factors selected in the

Configuration tab (for example, from the BOD generated per capita it is possible to calculate the Load of Influent BOD to the WWTP¹⁹). **To use estimates, click on the suggested value**.

- 3. We do not have information about the BOD load in the effluent (there is no monitoring in the WWTP). It would be possible to calculate it from the efficiency of our process, but we are not sure about this data either. In this sense, we are going to use the **dropdown menu** offered by ECAM, selecting the technology we have. The system of lagoons is a primary + secondary process. The software also calculates the value in kg/year.
- 4. If you don't have WWTP affluent monitoring data, you should also use estimation for the Nitrogen load in the influent. **To use estimates, click on the suggested value**.
- 5. Like step 3, we can calculate the Total Nitrogen load in the effluent from the dropdown menu. **Select the "primary + secondary process" option**.
- 6. Considering the technological composition of the treatment process (anaerobic + facultative lagoons) a methane emission factor of 0.540 kgCH₄/kgBOD should be assumed. The average nitrous oxide emission factor for the treatment is 0.013 kgN₂O-N/kgN. Check the topic "How to choose an emission factor for treatment if my WWTP has two or more core technologies" to understand this choice. To choose these factors, you have to fill them in directly.
- 7. The discharge emission factor is defined based on the <u>type of discharge</u> and the <u>level of</u> <u>information</u> that we have:
 - For CH₄ emission factor (discharge):
 - We have information about the water body of discharge, we know it is a specific river (Level 2).
 - The BOD load data used are estimated by ECAM from the efficiency of our process, also based on an influent BOD estimate (Level 1).
 - Based on this, choose the factor 0.068.
 - For the N₂O emission factor (discharge):
 - There is information about the water body, but there is no measurement of nutrients (Level 2).
 - Based on this, choose the factor 0.005.
- 8. The WWTP electricity consumption is entirely from the grid, with a total of **140,000 kWh** in 2021.
- 9. The emission factor for grid electricity comes from the General factors in the Configuration tab.

¹⁹ Check more about that in the Methodology Guide.

			,
	INPUTS		
	Enter the values for this stage		Highlight mode
	Serviced population	200,000	people
	wwt_serv_pop	200,000	people
	Volume of treated wastewater Estimation: 14,600,000 m ³	14,600,000	m3 🗸
	vwt_vol_trea	14,000,000	
	Volume of discharged effluent to water body 2 Estimation: 14,600,000 m ³	14,600,000	m3 🗸
	vwt_vol_disc	14,000,000	
	Influent BOD ₅ load Estimation: 6,205,000 kg	6,205,000	ka
	vwt_bod_infl	0,205,000	Kg 🗸
	Effluent BOD ₅ load		
	vwt_bod_effi	930,750	kg 🗸
3	Primary + Secondary (biological treatment plants) [15 %] (930,750 kg)		
	Total Nitrogen load in the influent Estimation: 1,651,305 kg	1,651,305	ka 🖌
	vwt_tn_infl	1,031,505	ing 🔹
	Total Nitrogen load in the effluent		
	wwt_tn_effl	990,783	kg 🗸
5	Primary + Secondary (biological treatment plants) [60 %] (990,783 kg)]	-
	CH ₄ emission factor (treatment)		
	wwt_ch4_efac_tre Custom value	0.54	kgCH ₄ /kgBOD
		6	
	N ₂ O emission factor (treatment) wwt_n2o_efac_tre	0.012	kgN ₂ O-N/kgN
	Custom value	0.013	kgiv ₂ O-iv/kgiv
			J
	CH ₄ emission factor (discharge) wwt.ch4.efac.dis	0.068	kgCH₄/kgBOD
	Discharge to aquatic environments (Tier 1) (0.068)	0.000	
7	N ₂ O emission factor (discharge)		
	wwt_n2o_efac_dis	0.005	kgN ₂ O-N/kgN
	Freshwater, estuarine, and marine discharge (Tier 1) (0.005)		020
	Energy consumed from the grid		7
	vwt_nrg_cons	8 140,000	kWh 🗸
	Emission factor for grid electricity 9 Estimation: 0.42 kgCO ₂ eq/kWh	1	
	wwt_conv_kwh	0.42	kgCO ₂ eq/kWh
	Sludge removed from wastewater treatment (dry weight)		
	wwt_mass_slu	0	kg 🗸
	[Type of treatment undefined \rightarrow [0 gSS/inhabitant/day] \rightarrow (0 kg)		
	BOD ₅ removed as sludge		
	vwt_bod_slud	0	kg 🗸
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		

Now answer the questions:

A. How much is the total GHG emission generated in the Wastewater Treatment Stage (treatment + discharge + electricity)?

The Outputs section shows the results of the requested calculations.

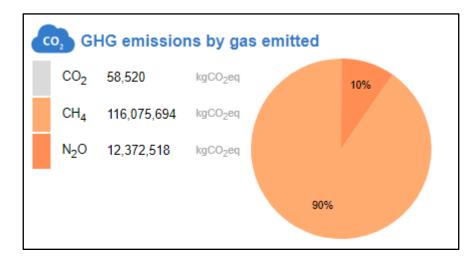
			Population with open def	ecation	0
sions	Pump Efficiency (10)	Sludge Management (41)	Energy Performance (14)	Costs (2)	
200,1 14,600,1	Highlight mode 000 people Click to c	ppen the Output section			

In the image below, we can see the result for the emissions referring to **Total GHG wastewater treatment (128,506,732 kg CO**_{2eq}).

OUTPUTS — hide outputs GHG emissions kgC02eq kgC02eq/year kgC02eq/year/serv.pop.			
	Value	Σ sum (1 substages)	Unit
Electricity (indirect) wwt_KPI_GHG_elec	58,520	58,520	kgCO ₂ eq
Treatment process wwt_KPI_GHG_tre	123,976,471	123,976,471	kgCO ₂ eq
Sludge management wwt_KPI_GHG_slu	0	0	kgCO ₂ eq
Discharged water wwt_KPI_GHG_disc	4,471,741	4,471,741	kgCO ₂ eq
Total GHG wastewater treatment wwt_KPI_GHG	128,506,732	128,506,732	kgCO ₂ eq

B. How much is the GHG emission of the Wastewater Treatment stage per capita (treatment + discharge + electricity)

To answer this question, select the unit kg CO_{2eq} /year/pob.serv. The result is **642.5** kg CO_{2eq} /year/pob.serv.


OUTPUTS hide outputs GHG emissions kgCO2eq kgCO2eq kgCO2eq/year	Value	Σ sum (1 substages) Unit
Electricity (indirect) wwt_KPI_GHG_elec	0.29	0.29 kgCO ₂ eq/year/serv.pop.
Treatment process wwt_KPI_GHG_tre	619.9	619.9 kgCO2eq/year/serv.pop.
Sludge management wwt_KPI_GHG_slu	0	0 kgCO ₂ eq/year/serv.pop.
Discharged water wwt_KPI_GHG_disc	22.36	22.36 kgCO2eq/year/serv.pop.
Total GHG wastewater treatment wwt_KPI_GHG	642.5	642.5 kgCO2eq/year/serv.pop.

C. Which of the gases considered - carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) - generate the most significant GHG emissions and how much is their corresponding emission in CO_{2eq} (treatment + discharge + electricity)?

To answer this question, click on the tab Results, and in Summary you should click on "Charts GHG".

ECA	Energy Perform	ance and Carbon En	missions Assessment an	d Monitoring Tool	v3.0.0	EN	
Home	Configuration	Inventory R	Results Compare	assessments More	You are editing USA W 128,506,732 kgCO ₂ eq 3	WTP assessment 65 days 0.42 kgCO ₂ /kWh	
	Summary Sankey diagram Report						
Summary:	Summary: GHG emissions and energy consumption						
Table Charts GHG Charts Energy Charts Serviced population							
Select u	Select units [kgCO2eq ▼]						

The third graph will show the emissions by GHG.

Conduct a complete assessment of an Urban Water Utility

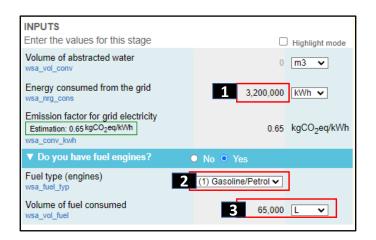
In this exercise, the proposal was to calculate the **GHG emissions of an Urban Water Utility**, **"Visionary Water (VW)"**, which was preparing an inventory of greenhouse gas emissions from its water and sanitation facilities.

First, start your assessment, or create a new one under the Configuration tab.

Now you will need to prepare the Configuration tab considering the following information:

- 1. Let's use the GWP Report IPCC 5th AR CCF.
- 2. The assessment period will be the full year of 2019.
- 3. The assessment will take place in Australia.
- 4. For the General factors, we will keep the values suggested by ECAM, since we don't have local or official factors to replace them.

Configuration					
Load and save file					
 List of assessments 				1	
Se	elect Global Warming Potential Repo	rt IPCC 5th	AR (2014/2013)	CCF 🗸	More info
	Assessment period GHG (kgCO2e	q) Energy (kV	Vh) Substages		Options
Visionary Water	2019-01-01 2020-01-01 (365 days) 20,620,735	5 11,950,0	00 5	settir dupli	
change assessment name					
Assessment period	1/01/2020 🗂 365 days				
Country Select Australia	More info				
Currency (3 letters code)	- 3	A	UD 4		Currency
Emission factor for grid electricit	у	more info		0,646	kg _{CO2} /kWh
Annual protein consumption per	capita	more info	30,9344800000	00004	kg/person/year
BOD ₅ generation (wastewater)		more info		60	g/person/day
Industrial and commercial co-dis	charged protein into the sewer	more info		1,25	kgN/kgN
Non consumed protein added to	Non consumed protein added to the wastewater				kgN/kgN
Additional Nitrogen from househ wastewater	old products added to the	more info		1,1	kgN/kgN
Comments	Access inver	ntory			

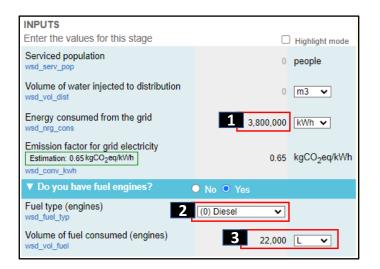

The next step will be to create a substage within each one of the stages (Water Abstraction, Water Distribution, Water Treatment, Sanitation Collection, and Sanitation Treatment).

	4D Save file	
	Water supply Sanitatio	n
Click on the	Abstraction (1) Treatment (1) Distribution (1) Collection (1) Treatment (1)	Onsite sanitation (0)
substage to open 2nd the input section	Abstraction 1 🗊 0 kacoper Treatment 1 😨 0 kacoper Distribution 1 😨 0 kacoper Collection 1 😨 0 kacoper Treatment 1 😨 0 kacoper	~no substages
	Total Abstraction: 0 kgC0_eq Total Treatment: 0 kgC0_eq Total Distribution: 0 kgC0_eq Total Collection: 0 kgC0_eq Total Treatment: 0 kgC0_eq	Total Onsite sanitation: 0 kgCO2eq
Click to create a new substage	+ create substage	+ create substage

Now you must fill in the Input Section according to the data provided by the exercise.

Water Abstraction

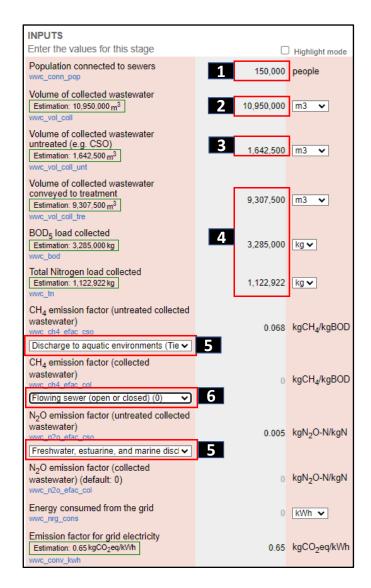
- 1. The energy consumption is **3,200,000 kWh**.
- 2. The fuel is **gasoline**.
- 3. Fuel consumption is **65,000 liters.**


Water Treatment

- 1. The energy consumption is **850,000 kWh**.
- 2. The fuel is gasoline.
- 3. Fuel consumption is **10,000 liters.**

INPUTS Enter the values for this stage	Highlight mod	e
Volume of treated water wst_vol_trea	0 m3 🗸	
Treatment type (potabilization chain) wst_treatment	(0) None 🗸	
Energy consumed from the grid wst_nrg_cons	1 850,000 KWh ✔	
Emission factor for grid electricity Estimation: 0.65 kgCO ₂ eq/kWh wst_conv_kwh	0.65 kgCO ₂ eq/kW	/h
▼ Do you have fuel engines?	O No ● Yes	
Fuel type (engines) wst_fuel_typ	(1) Gasoline/Petrol 🗸	
Volume of fuel consumed wst_vol_fuel	3 10,000 L 🗸	

Water Distribution


- 1. The energy consumption is **3,800,000 kWh**.
- 2. The fuel is **diesel**.
- 3. Fuel consumption is **22,000 liters.**

Sanitation Collection

- 1. The Population connected to sewers is **150,000 people.**
- 2. When filling in the population, ECAM will suggest some **estimates** for the inputs (**green squares**). These values are also calculated based on the General Factors selected in the Configuration tab (for example, from the BOD generated per capita it is possible to calculate the Load of Influent BOD to the WWTP²⁰). **To use estimates, click on the suggested value**.
- 3. Volume of collected wastewater untreated is 15% of our total volume of collected water. 15% of 10,950,000. Fill in 1,642,500 m³.
- 4. Use the estimation tool to calculate the next data.
- 5. The discharge emission factor is defined based on the <u>type of discharge</u> and the <u>level of</u> <u>information</u> that we have (To recall the criteria of this analysis, access topic "**How to choose an emission factor for discharge (using Tiers)**"
 - For CH₄ emission factor (untreated collected wastewater):
 - We do not have information on the water body of discharge (Level 1)
 - The BOD load data used are estimated by the ECAM from the General Factors (per capita generation averages) (Level 1).
 - Based on this, choose the factor 0.068.
 - $\circ~$ For the N_2O emission factor (untreated collected wastewater):
 - There is no information about the water body (Level 1).
 - Based on this, choose the factor 0.005.
- 6. There is no CH₄ emission factor for collected water since the collection is made by flowing closed sewers.

 $^{^{\}rm 20}$ Check more about that in the Methodology Guide.

Sanitation Treatment

- 1. The population serviced by the wastewater treatment system is 127,500 people.
- 2. When filling in the serviced population, ECAM will suggest some **estimates** for the inputs (**green squares**). These values are also calculated based on the General Factors selected in the Configuration tab (for example, from the BOD generated per capita it is possible to calculate the Load of Influent BOD to the WWTP²¹). **To use estimates, click on the suggested value**.
- 3. We do not have information about the BOD load in the effluent (there is no monitoring in the WWTP). It would be possible to calculate it from the efficiency of our process, but we are not sure about this data either. In this sense, we are going to use the **dropdown menu** offered by

²¹ Check more about that in the Methodology Guide.

ECAM, selecting the technology we have. **Choose the "Primary + Secondary biological treatment plants"**.

- 4. Since you don't have Nitrogen influent monitoring data, you should also use estimation for the Nitrogen load in the influent. **To use estimates, click on the suggested value**.
- 5. Like step 3, we can calculate the Total Nitrogen load in the effluent from the dropdown menu. **Select the "Primary + Secondary biological treatment plants " option**.
- 6. Choose the centralized aerobic treatment plant option in the dropdown menus since we have activated sludge as our technology.
- 7. The discharge emission factor is defined based on the <u>type of discharge</u> and the <u>level of</u> <u>information</u> that we have:
 - For CH₄ emission factor (discharge):
 - We have information about the water body of discharge, we know it is a specific river (Level 2).
 - The BOD load data used are estimated by ECAM from the efficiency of our process, also based on an influent BOD estimate (Level 1).
 - Based on this, **choose the factor 0.068**.
 - For the N₂O emission factor (discharge):
 - There is information about the water body, but there is no measurement of nutrients (Level 2).
 - Based on this, choose the factor 0.005.
- 8. We have our own data for sludge removed from the treatment. Fill in with 3,000 tones.
- 9. Since out sludge is digested in an anaerobic digester, choose the option "Aerobic treatment plants with primary treatment and anaerobic sludge digestion".

INPUTS Enter the values for this stage		F) Highlight mode
Serviced population			
wwt_serv_pop		127,500	people
Volume of treated wastewater	Estimation: 9,307,500 m ³	9,307,500	m3 🗸
vwt_vol_trea		3,507,500	
Volume of discharged effluent to water body	Estimation: 9,307,500 m ³	9,307,500	m3 🗸
wwt_vol_disc			
Influent BOD ₅ load wwt_bod_infl	Estimation: 2,792,250 kg	2,792,250	kg 🗸
Effluent BOD ₅ load			
vwt bod effl		418,838	kg 🗸
Primary + Secondary (biological treatment plants) [15 %] (418,838 kg)	*		
Total Nitrogen load in the influent	Estimation: 954,483 kg	4 954,483	kg 🗸
Total Nitrogen load in the effluent			
wwt_tn_effi		572,690	kg 🗸
Primary + Secondary (biological treatment plants) [60 %] (572,690 kg)	~		
CH ₄ emission factor (treatment)			
vwt_ch4_efac_tre Centralised, aerobic, treatment plant (0.018)	~	0.018	kgCH ₄ /kgBOD
N ₂ O emission factor (treatment)			
wwt_n2o_efac_tre		0.016	kgN ₂ O-N/kgN
Centralised, aerobic, treatment plant (0.016)	♥		
CH ₄ emission factor (discharge)			he CH /he DOD
wwt_ch4_efac_dis Discharge to aquatic environments (Tier 1) (0.068)	×	0.068	kgCH ₄ /kgBOD
N ₂ O emission factor (discharge)			
wwt_n2o_efac_dis		0.005	kgN ₂ O-N/kgN
Freshwater, estuarine, and marine discharge (Tier 1) (0.005)	•		
Energy consumed from the grid wwt_nrg_cons		4,100,000	kWh 🗸
Emission factor for grid electricity	Estimation: 0.65 kgCO2eq/kWh		h=00 ==/////
wwt_conv_kwh		0.65	kgCO ₂ eq/kWh
Sludge removed from wastewater treatment (dry weight) wwt_mass_slu		8 3,000	t 🗸
Custom value	♥	0	
BOD ₅ removed as sludge			
wwt_bod_slud Aerobic treatment plants with primary treatment and anaerobic sludge digestion (mixed primary an	a secondary sludge, treated and w	9 3,000	t 🕶
Peropic rearment plants with primary rearment and anacropic sludge ugestion (mixed primary an	to secondary sludge, ireated alle		

Since we are also accounting for the biogas emissions within the anaerobic digestion, you have to activate the option "Are you producing biogas from anaerobic digestion".

Once you did that, you have to:

- Use the estimation option to estimate the production of biogas (1,152,000 Nm³). We also know that our case follows the ECAM suggestion when it comes to the percentage of biogas flared (98%) and leaked to the atmosphere (2%).
- 2. Since we monitor ao biogas, we know **it has 65% of methane. Fill in this information**.

▼ Are you producing biogas from anaerobic digestion?	No O Yes		
Biogas produced (volume) wwt_biog_pro	Estimation: 1,152,000 Nm ³	1,152,000	Nm3 🗸
Biogas flared (% volume) vwt_biog_fla	Estimation: 98 %	98	%
Biogas valorised as heat and/or electricity (% volume) vwt_biog_val	Estimation: 0 %	1 0	%
Biogas leaked to the atmosphere (% volume) vwt_biog_lkd	Estimation: 2 %	2	%
Biogas sold (% volume) vwt_biog_sold	Estimation: 0 %	0	%
Percentage of methane in the biogas (% volume) vwt_ch4_biog		2 65	%
Fuel type (digester) vwt_dige_typ		(0) Diesel 🗸	
Fuel consumed for the digester vwt_fuel_dig		0	LV
Energy efficiency for biogas valorization with respect to the theoretical maximum ${\sf wwt_nrg_biog_eff}$		43	%
Electrical energy produced from biogas valorization wwt_nrg_biog	Estimation: 0 kWh	0	kWh 🗸

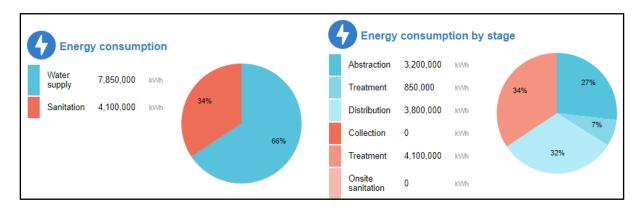
Now answer the questions:

A. How much GHG emissions are generated for each of the emissions requested by the exercise (CO_{2eq})?

The emissions generated by each stage can be displayed in the Results -> Summary -> Table tab.

Home Configuration Inventory Results Compare assessments More	
	Summary Sankey diagram Report
Summary: GHG emissions and energy consumption	
Table Charts GHG Charts Energy Charts Serviced population	
Select summary table Image: GHG Energy Select units Image: KWh Image:	Show emissions in CO $_2,$ CH $_4$ and N $_20$ $\ \ {\rm No}$ \bigcirc Yes

Total (kgCO ₂ eq)	System (kgCO ₂ eq)	Stage (kgCO ₂ eq)	Emission source	Emission (kgC0 ₂ eq)
		Abstraction 2,215,465	Electricity (indirect) Fuel engines	2,067,200 148,265
	Water supply 5,301,281	Treatment 571,910	Electricity (indirect) Fuel engines	549,100 22,810
CO ₂ Total GHG emissions		Distribution 2,513,906	Electricity (indirect) Fuel engines	2,454,800 59,106
19,180,548	0_	Collection 1,533,624	Discharge to water body (untreated)	1,533,624
	Sanitation 13,879,268	Treatment	Electricity (indirect) Treatment process Biogas (anaerobic digestion of sludge)	2,648,600 7,024,392 363,386
		12,345,643	Discharged water	2,309,265

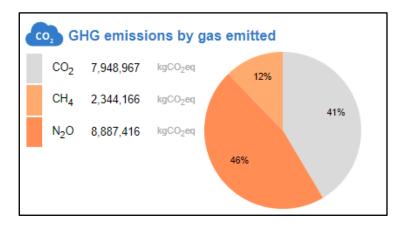

B. Is the greater consumption of electrical energy associated with the Utility's Water supply or Sanitation systems? Rank the stages according to the highest energy consumption (in CO_{2eq}) in the reference year.

You can check data about electricity still in the Results -> Summary tab but choosing to show the Energy Charts.

ECAM Energy Performance and Carbon Emissions Assessment and Monitoring Tool											
Home	Configuration	Inventory	Results	Compare assessments	More						
								S	Summary	Sankey diagram	Report
Summary: GHG emissions and energy consumption											
Table Charts GHG Charts Energy Charts Serviced population											
Select u	nits kWh 🗸										

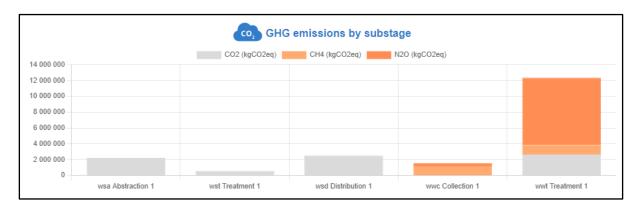
In the charts we see that the greater consumption of electricity is related to the Water supply (7,850,000 kWh). The rank for energy consumption is: Sanitation treatment > Water Distribution > Water Abstraction > Water treatment.

This approach can be interesting to initiate investigations that lead to the prioritization of actions for energy management.



C. Which gas has the greatest absolute representation of emissions for the utility (in CO_{2eq})? And which gas has the highest unitary generation and in which stage (in CO_{2eq})?

To check information about specific gases, go to the Charts GHG option within the Results -> Summary tab.


Home Cor	nfiguration In	ventory Results	Compare assessments	More						
						Summary	Sankey diagram	Report		
Summary: GHG emissions and energy consumption										
Table Charts GHG Charts Energy Charts Serviced population										
Select units	kgCO2eq 🗸									

The third chart will show information about each specific GHG within the whole assessment. N_2O represents the biggest absolute emission in this case (8,887,416 kg CO_{2eq}).

To display the unitary emissions per gas, which is, per gas per stage, access the bar chart below the pie charts.

From this graph it will be possible to see that the largest representative of unitary emission is the N_2O in the Sanitation Treatment Stage ("wwt Treatment 1"). It is interesting to note that N_2O emissions, often less representative when in the unit of the gas itself, become extremely relevant when converted to equivalent CO_2 due to their high Global Warming Potential.

Troubleshooting

What happens if I have negative emissions?

It is important that the users consider the source of their activity data when evaluating the results in the ECAM tool. Negative results could happen when the user uses two different sources for data that compose the same equation.

To traceback a negative result, use highlight mode (topic "How to traceback a result using the highlight function").

What happens if I upload data from Excel and they are not recognized by the tool?

The reason for this is because you probably didn't follow the template suggested by the tool. Check more about it in the topic "**How to load data from excel files**".

The .Json file that I uploaded is damaged, what do I do?

JSON is a plain text file that can be opened in a text editor. You can easily check it and modify/save it back without any special software.

I want to change the emission factors given in ECAM, how do I change them?

To change an emission factor suggested by the tool, just click on the numerical value, and fill in with your own EF.

Further information about the calculation of emission factors by ECAM is given in the **Methodology Guide**.

Can I rearrange the order of my assessments in ECAM?

You can rearrange the order in which assessments appear in your report when comparing them. To do this, follow the steps outlined in the topic "**Comparing assessments**".

Does ECAM consider leap years?

Yes. The ECAM tool considers leap years, but for this it will be necessary to select the assessment period properly. Check the topic "**How to start and configure a new assessment**".

Where to learn more

ECAM has a series of complementary materials for the use and understanding of the tool. They include:

- **Methodology Guide**: which presents the conceptual framework of the tool, as well as the equations and sources behind the calculations and estimates.
- E-learning modules: to learn interactively what was also presented in the User Manual.
- **Tutorial Video Collection**: series of videos on how to use the ECAM tool, organized by topics.
- Factsheets, cases, and more. To access, visit the WaCCliM project webpage.

References

Alegre, H., Melo Baptista, K., Cabrera, E., Cubillo, F., Duarte, P., Hirner, W., . Parena, R. (2006). Performance indicator for water supply services (2 ed.). London: IWA Publishing.

Cabrera, Enrique; Dane, Peter; Haskins, Scott; Theuretzbacher-Fritz, Heimo (2011). Benchmarking Water Services. Water Intelligence Online, 10(), 9781780400877–. doi:10.2166/9781780400877

Chernicharo, C. A. L. (2015). Anaerobic Reactors. In Water Intelligence Online (Vol. 6, Issue 0, pp. 9781780402116–9781780402116). IWA Publishing. https://doi.org/10.2166/9781780402116

European Investment Bank. (2020). EIB project carbon footprint methodologies: methodologies for the assessment of project GHG emissions and emission variations: July 2020. Publications Office.

FAO. (2022). Food Balances. Retrieved June 22, 2022, from https:// www.fao.org/faostat/en/#data/FBS/visualize

IPCC (2006), 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

IPCC (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P. and Federici, S. (eds). Published: IPCC, Switzerland.

Silva, C., & Rosa, M. (2014). Energy performance indicators of wastewater treatment: a field study with 17 Portuguese plants. IWA World Water Congress. Lisbon: IWA Publishing.

UNFCCC. (2022). List of harmonized GHG accounting standards/approaches and guidelines developed. Unfccc.int. Retrieved June 22, 2022, from https://unfccc.int/climate-action/sectoral-engagement/ifis-harmonization-of-standards-for-ghg-accounting/ifi-twg-list-of-methodologies

Sperling, M. V. (2015). Basic Principles of Wastewater Treatment. In Water Intelligence Online (Vol. 6,Issue0,pp.9781780402093–9781780402093).IWAPublishing.https://doi.org/10.2166/9781780402093

This project is part of the International Climate Initiative (IKI): www.international-climate-initiative.com/en

On behalf of:

Implemented by:

of the Federal Republic of Germany

