This paper presents the development of an ongoing research project aiming at setting-up an innovative mathematical model platform for the design and management of WWTPs. The final goal of the project by means of this platform is to minimize the environmental impact of WWTPs through their optimization in terms of energy consumptions and emissions, which can be regarded as discharged pollutants, sludge and GHGs.
IWA Search Theme: Water Utility Management
Modelling the bioenergy potential of municipal wastewater treatment plants
The present paper deals with designing a tool to answer the following research questions:
Which bioenergy potentials occur in different plant types? Which mass and
energy flows are related to the specific potentials? Which utilisation processes for
the potentials can lead to a high energy recovery efficiency of WWTS? Preliminary
analyses with the designed tool were focused on estimating the level of electric and
thermal energy self-sufficiency of different plant configuration scenarios including
or excluding digester gas and/or sludge utilisation units. First results based on the
level of self-sufficiency and associated energy and disposal costs show that a
digester gas and sewage sludge utilisation should be considered when designing
future WWTS.
Pressure-driven demand and leakage simulation for water distribution networks
A novel steady-state network simulation model that fully integrates, into a classical hydraulic representation, pressure-driven demand and leakage at the pipe level is developed and presented here. After presenting a brief literature review about leakage modelling, the importance of a more realistic simulation model allowing for leakage analysis is demonstrated. Then, the algorithm is tested from a numerical standpoint and subjected to a convergence analysis. These analyses are performed on a case study involving two networks derived from real systems. Experimentally observed convergence/error statistics demonstrate the high robustness of the proposed pressure-driven demand and leakage simulation model.
Biogas Wastewater Assessment Technology Tool (BioWATT)
The purpose of BioWATT is to provide a quick and preliminary assessment of wastewater-to-energy projects.Based on as little as two inputs provided by the user (average hydraulic load and average inflow BOD5 concentration).
The Roadmap to a Low-Carbon Urban Water Utility
An international guide to the WaCCliM approach
The Roadmap to a Low-Carbon Urban Water Utility presents utility managers with an approach to address their most pressing challenges, while reducing carbon emissions through
measures that either have a return on investment through energy or water savings, or that correspond to planned investments as part of the asset management plan to maintain or improve their services. Utilities adopting this approach are contributing to a carbon-neutral future, by instigating a change of mind-set, not only in urban water management but also by inspiring all other urban services through sharing the risks and the urgency to act to avoid aggravated impacts of climate change, of which water utilities are among the first victims: water scarcity, flooding and deteriorated water quality
The Biosolids Emissions Assessment Model (BEAM)
Biosolids management practices are evaluated based on environmental, economic and social impacts. A consideration of increasing importance is the impact of greenhouse gas (GHG) emissions from biosolids (treated sludge). BEAM tool was developed for calculating GHG emissions from biosolids management.
Guidelines on Energy Efficiency on Water and Wastewater Utilities
These EE-Guidelines were tested by three pilot utilities, SONEDE in Tunisia, ONEE in Morocco and Aqaba Water Company in Jordan. The energy checks and energy analysis at the water supply facilities were guided and supported by German experts from Hamburg Wasser, a company with longstanding experience in energy management – and known for its strategic target to be independent from external energy inputs before the year 2020.
Introduction to ECAM
This manual offers an overview of ECAM 2.0, the Energy Performance and Carbon Emissions Assessment and Monitoring tool, to guide first-time users through the basic elements of the tool and get started with the assessment. Read here.
ECAM Methodology
This document provides a detailed explanation on the theoretical background of the second version of the web-based “Energy performance and Carbon Emissions Assessment and Monitoring” (ECAM V2) tool. The main assumptions and the key considerations that form the basis of the tool are explained. An overview of variables, performance indicators and related equations, as well as benchmark values and references are given. Additionally, the manual helps users with evaluating different scenarios for specific system configurations.
Frequency pressure regulation in water supply systems
In water supply systems, pressure management in most cases is proven to be the most cost-effective activity related to water loss control. As an advanced method of pressure control, it is possible to use variable frequency drives for centrifugal pump control. Pressure regulation can be performed with constant pressure or with proportional pressure control. The application of proportional pressure control is particularly applicable in water supply systems as the operating pump performance is constantly adapting the pressure to the actual demand. Along with lower leakage losses, it also results in lower energy consumption and the elimination of non-stationary phenomena, thereby extending the pump lifetime. Therefore, the paper presents a theoretical discussion of the proportional pressure control. Possible savings are shown on the numerical example of water supply system of the city of Velika Gorica.