Guidelines on Energy Efficiency on Water and Wastewater Utilities

These EE-Guidelines were tested by three pilot utilities, SONEDE in Tunisia, ONEE in Morocco and Aqaba Water Company in Jordan. The energy checks and energy analysis at the water supply facilities were guided and supported by German experts from Hamburg Wasser, a company with longstanding experience in energy management – and known for its strategic target to be independent from external energy inputs before the year 2020.

Introduction to ECAM

This manual offers an overview of ECAM 2.0, the Energy Performance and Carbon Emissions Assessment and Monitoring tool, to guide first-time users through the basic elements of the tool and get started with the assessment. Read here.

ECAM Methodology

This document provides a detailed explanation on the theoretical background of the second version of the web-based “Energy performance and Carbon Emissions Assessment and Monitoring” (ECAM V2) tool. The main assumptions and the key considerations that form the basis of the tool are explained. An overview of variables, performance indicators and related equations, as well as benchmark values and references are given. Additionally, the manual helps users with evaluating different scenarios for specific system configurations.

Separating sewage from rainwater in Vancouver

Vancouver is working toward the Province of BC’s environmental goal to eliminate sewage overflows by 2050. As the City replaces combined sewer systems with separated sewer systems, properties will also need to have separated sewer systems.There are two sewer separation programs running concurrently in the City. The overall sewer mains are being separated so that storm drains carry stormwater runoff separately from other wastewater.

Water Well Rehabilitation and Reconstruction

This is the first professional’s guide to every aspect of pollution control for all types of water bodies. From at-the-source prevention to technical treatment solutions, the Water QualityControl Handbook brings readers expert guidance on assessing,controlling, eliminating, and remediating the many factors that contribute to water pollution.

Strategic alliance for water loss reduction

On this website you will find background information, know-how and best practices on the reduction of water loss from supply networks.

It also provides downloadable guidelines for the sustainable planning and implementation of water loss reduction projects and also offers several training modules.

Water loss management: A case study in Korea. Water Practice & Technology

A case of water loss management on a small city whose water supply is approximately 34,000 ?/day is examined. Revenue water ratio was just 55% mostly because of water loss caused by old pipes and difficulties in pipeline management in the beginning 2004. From 2005 to 2006, 50 km of pipe was replaced due to leaks, poor resultant water quality, blockage or corrosion. In all the new pipes, water meters and valves were replaced as well. This has already led to water savings, and the city plans to continue maintaining and replacing pipes as needed. Overall, through systematic management and rehabilitation/replacement of pipelines, water leakage has decreased dramatically, and the revenue water ratio has increased from 55% to 70% in just 2 years.

Ultra sonic algae control in Wastewater Treatment Plant

One of the main challenges faced by Wastewater Treatment Plants (WWTPs) is the control of algae blooms. High algae concentrations create problems for process performance and increase operating expenditure for cleaning and maintenance activities.

Benefits and drawbacks of thermal pre-hydrolysis for operational performance of wastewater treatment plants

This paper presents benefits and potential drawbacks of thermal pre-hydrolysis of sewage sludge from an operator’s prospective. The innovative continuous Thermo-Pressure-Hydrolysis Process (TDH) has been tested in fullscale at Zirl wastewater treatment plant (WWTP), Austria, and its influence on sludge digestion and dewatering has been evaluated. A mathematical plant-wide model with application of the IWA Activated Sludge Model No.1 (ASM1) and the Anaerobic Digestion Model No.1 (ADM1) has been used for a systematic comparison of both scenarios – operational plant performance with and without thermal pre-hydrolysis. The impacts of TDH pre-hydrolysis on biogas potential, dewatering and return load in terms of ammonia and inert organic compounds (Si) have been simulated by the calibrated model and are displayed by Sankey mass flow figures. Implementation of full scale TDH process provided higher anaerobic degradation efficiency with subsequent increased biogas production (+75-80%) of waste activated sludge (WAS). Both effects – enhanced degradation of organic matter and improved cake’s solids content from 25.2 to 32.7% TSS – promise a reduction in sludge disposal costs of about 25%. However, increased ammonia release and generation of soluble inert Si was observed when TDH pre-hydrolysis was introduced to WWTP.

Assess your utility’s carbon footprint
X Close

Assess your utility’s energy performance and GHG emissions

Assess my system