COMPARISON OF SUITABLE LEAK DETECTION METHODS

This publication is intended to support water utilities, especially in EMDEs, (Emerging Markets and Developing Economies), to broaden their knowledge of the currently available methods, including their advantages, disadvantages, application possibilities and limitations to be
able to make an initial pre-evaluation of the methods under the respective local conditions.

2nd Edition Smart Water Management

Digitalization is transforming the way water and wastewater utilities plan and manage their infrastructure and interact with their customers and their staff. Globally, digital technologies have been playing a role in resource efficient water management for some time, including in the management of water losses and the energy efficiency of utilities. Digital applications have been developed for customer engagement, leak detection, pressure management, energy efficient pumping, energy management and wastewater treatment.

This document addresses these differences, from tariff structures to levels of water losses, and identifies opportunities for digitalization in resource-efficient water management that can work especially well in EMDEs. It also discusses some digital applications that are already in widespread use in high-income countries, but due to economic, technical or other factors are not currently suited to the needs of EMDEs.

Resilient Water Infrastructure Design Brief

The present report focuses specifically on incorporating resilience into the engineering design of drinking water and sanitation infrastructure. It focuses narrowly on resilience in relation to three hazards, floods, droughts, and high winds. The focus is on these hazards because they are the
main threats that climate change is expected to pose to water infrastructure.

Fact Sheet | Strengthening the Water-Energy-Climate Nexus for Green Recovery

Continuous and financially sustainable water and sanitation services are the backbone of resilient economies, particularly during challenging times. In addition to that, the urban water sector can lead the transition towards green recovery through targeted investments, embarking on a pathway towards decarbonization and environmental sustainability. Besides securing continuous drinking water and sanitation for hygiene measures and industrial production, an investment initiative is needed to tap the full potential of combining water, energy and climate action. Implementing low carbon energy projects in the urban water and sanitation sector improves utilities services and financial sustainability, creates green jobs and local business opportunities, protects the climate and environment and increases resilience to face future financial, health and climate crises.

Methodology for establishing Baseline Scenarios

This methodology outlines the path for establishing business-as-usual (BAU) emission scenarios water and wastewater utilities could exhibit in the mid-term if the current management and practices were to continue in four easy steps. The approach is created on the basis of the “Energy Performance and Carbon Emissions Assessment and Monitoring” (ECAM) tool. Based on the projected future values of key parameters, the variables that are necessary to be inputted into ECAM – the ECAM inputs – for the computation of GHG emissions can be quantified for a certain point of time. This step is facilitated by the “Tool of Projecting ECAM Inputs for GHG Emissions as BAU Scenarios (PEIGE)” in Excel format, which automatically calculates future values once users have entered the current ECAM input values and BAU trends. BAU scenarios can help to understand the impacts of adopting a low carbon policy and can serve as a technical component to inform/decide strategic planning on climate change, emissions mitigation goal setting and long-term climate policy design.

Assess your utility’s carbon footprint
X Close

Assess your utility’s energy performance and GHG emissions

Assess my system