Upgrading and methanisation projects at WWTP Avedøre

Enzymatic Biogas Upgrading
The techniques for removing CO2 from biogas are well known and available on the market in a number of ways to upgrade the biogas. Scrubbing with water or amine is most widely used methods. Common to all types is the large capital and operation cost (CAPEX & OPEX) in upgrading systems
A new technique is based on enzyme enhanced removal of the biogas’ content of CO2. The enzyme; Carbonic Anhydrase is well known as an accelerator for CO2 absorbtion and has been studied for decades. The enzyme is one of the fastest enzymes known in nature, and is present in all living organisms. Enzyme’s task is to transport CO2 in and out of the body tissue as lungs and muscles. The enzyme’s inability to remain active for longer periods in harsh industrial processes, has until now, prevented commercial use of the enzyme. Encapsulation of the enzyme in a gel has been tested in lab scale.
During spring 2015 Akermin and Ammongas will build a full-scale upgrading plant, that will handle the 3 million cubic meter biogas/year from WWTP Avedøre’s digesters.
The enzymes used in the project comes from Novozymes A/S,
In July 1, 2015 the biogas will be sent through the system and into the natural gas grid. The demonstration project will run until April 2017, and then will come a long period with commercial operation.

Use of biogas for cogeneration of heat and electricity for local application: performance evaluation of an engine power generator and a sludge thermal dryer

A small unit of cogeneration of energy and heat was tested at the Centre for Research and Training on Sanitation UFMG/COPASA – CePTS, located at the Arrudas Sewage Treatment Plant, in Belo Horizonte, Minas Gerais, Brazil. The unit consisted of an engine power generator adapted to run on biogas, a thermal dryer prototype and other peripherals (compressor, biogas storage tank, air blower, etc.). The heat from engine power generator exhaust gases was directed towards the thermal dryer prototype to dry the sludge and disinfect it. The results showed that the experimental apparatus is self-sufficient in electricity, even producing a surplus, available for other uses. The tests of drying and disinfection of sludge lasted 7 h, leading to an increase in solids content from 4 to 8% (50% reduction in sludge volume). Although the drying of sludge was not possible (only thickening was achieved), the disinfection process proved very effective, enabling the complete inactivation of helminth eggs.

Detailed dynamic pumping energy models for optimization and control of wastewater applications

Despite the increasing level of detail in wastewater treatment process models, oversimplified energy consumption models (i.e. constant ‘average’ power consumption) are being used in optimization exercises. A new dynamic model for a more accurate prediction of pumping costs in wastewater treatment has been developed to overcome this unbalance in the coupled submodels. The model is calibrated using two case studies. The first case study concerns the centrifugal influent pumps (Nijhuis RW1-400 · 525A) of the municipal wastewater treatment plants (WWTPs) in Eindhoven (The Netherlands), governed by Waterboard De Dommel. For the second case study, concerning a centrifugal pump (Flygt, type NT3153 · 181) of the intermediate pumping station (pumping primary treated wastewater) of the Mekolalde WWTP, located in Bergara (Guipúzcoa, Spain), a model extension was necessary in order to allow a better description of the pump curve, making the model more generic. Both cases showed good agreement between the model predictions and the measured data of energy consumption. The model is thus far more accurate compared with other approaches to quantify energy consumption, paving the way towards ‘global’ process optimization and new, improved control strategies for energy reduction at WWTPs.

Energy Efficiency in the Water Industry: A Compendium of Best Practices and Case Studies – Global Report

Over the last decade, energy consumption by the water sector has increased considerably as a consequence of the implementation of new technologies to meet new potable water and effluent quality standards. The price of energy has also substantially increased and these increases will be compounded by the need for additional energy intensive processes to achieve more exacting regulatory requirements.

This Compendium draws together the best practice in energy efficient design and operation of water industry assets. The book identifies the developments and future opportunities by detailed examination of current best practice and technologies:

It illustrates incremental improvements in energy efficiency through optimisation of existing assets and operations. More substantial improvements in energy efficiency from the adoption of novel technologies. Successful case studies based on results of full scale operations. This compendium is an invaluable reference for water engineers, utility managers, and water and energy professionals.

Micro-turbines on drinking water treatment plant in France (Super Rimiez)

Microturbines installed on drinking water supply network allow converting the hydraulic potential energy loss resulting from this hydraulic design into electrical energy. The drinking water treatment plant of SUPER RIMIEZ is located higher than the customers leading to an excess pressure (>17 bars) at domestic network inlets. Installation of 4 micro-turbines on drinking water supply network: 4.5 million kWh/y generated.

Assess your utility’s carbon footprint
X Close

Assess your utility’s energy performance and GHG emissions

Assess my system