This document provides a detailed explanation on the theoretical background of the second version of the web-based “Energy performance and Carbon Emissions Assessment and Monitoring” (ECAM v2.2) tool. The main assumptions and the key considerations that form the basis of the tool are explained. An overview of variables, performance indicators and related equations, as well as benchmark values and references are given. Additionally, the manual helps users with evaluating different scenarios for specific system configurations.
IWA Search Format: Literature
Annex IV: Overview of Opportunities & Solutions to lower the GHG footprint of Urban Water Utilities
The information in this annex captures the solutions inventory as shown on the knowledge platform as of December 2018. It is recommended to go to the online portal to explore resources associated to these solutions and potential new solutions that might have been added since.
Case study: Arrudas Waste Water Treatment Plant Biogas Recovery
The Arrudas biogas project offers a valuable example of a well-functioning energy recovery project that embraces the principals of low-carbon sustainability within municipal wastewater treatment operations. Since the project came on-line in 2011 it has avoided over 6,000 tons of CO2e, emissions that would have otherwise been emitted directly to the atmosphere.
Case Study: Aguas de Cartagena, Colombia – An Example of a Water Utility Transformation to a Low Carbon Low Energy Future
In Colombia, with the new SDG agenda, utilities are starting to understand the importance to become more efficient in their operation, not only because of the costs, but also due to the impact that their systems have in the environment. The example of Aguas de Cartagena showcased the effort of a water utility to increase its efficiency, with the optimization of the pumping system it was possible to reduce the energy consumption (and energy costs) in the water supply system, and consequently a reduce the GHG emissions.
A potential solution to reduce the pharmaceutical contamination of surface water with the ultimate objective of GHGs emission reduction
The removal or degradation of pharmaceutical compounds present in the urine or other real wastewater matrices mixed or contaminated with urine is a foremost necessity due to the frequent notifications of various multi-drug resistance based disease outbreaks in whole biosphere. Thus, these compounds are subsequently required to be removed from the urine matrix before their dissolution into the bulk or sewage wastewater streams. Therefore, urine collection at source followed by in-situ or separate ex-situ treatment has been proposed to effectively treat a limited volume of concentrated pharmaceutical compounds present in a small batch. The additional benefit of this source separated urine treatment is the possibility of efficiently recovering nitrogen, phosphorus, and potassium based nutrients.
Sewer sludge cleaning and subsequent sludge sediments recycling reuse: A case study in PR China
The treatment and disposal of sludge sediments come from sewer cleaning process is the key for carbon neutrality of the whole system. This means that the sludge sediments should be recycled and beneficial reused rather than directly incineration, landfill or even laissez-faire. nevertheless, besides the environmental impacts of carbon footprint mitigation, relevant co-conflicting issues may include engineering cost, public perception, socio-economic, rules/regulations, and managerial aspects of cleaning process. They all receive excessive consideration from government authorities and stakeholders.
SCADA: Supervisory Control And Data Acquisition
Use of supervisory, control, and data acquisition (SCADA) system for monitoring, supervision and controlling of pumping systems can help minimize energy consumption of GHG emissions. It includes measurements in real time of water levels, pressures, flows, energy consumption and other operational parameters. It also helps to adjust and control the pump station operation, contributing to fight water losses or infiltration, reduce pumping during energy peak hours and adjust pumping volumes to the needs of the system. The SCADA systems provide utility managers with access to real-time operating data and can help offset the higher operating costs by minimizing unplanned downtime and improving maintenance plans. The SCADA system can also be used to optimize pumping in real-time through advanced pump optimization software and control, or through either a model-based or knowledge-based optimization that is implemented via a rule-based system programmed into the SCADA system. This type of optimization entails the use of algorithms to determine the best pumping scheme for a given situation. This can incorporate the peak energy times previously referenced, but also a prioritization of which pumps or pumping stations are used to maximize efficiency whenever possible. For example, if only a certain volume is demanded, then the SCADA system will first operate the most efficient pumps or pumping stations to meet the demand until greater capacity or more pumps are needed.
Comparison of 4 Different Flow Control Methods Of Pumps
Based upon the system head conditions, pumps may be able to pump at higher rates than needed when operating at 100% motor speed. This flow rate can be controlled by one of two ways, throttling the pump with a valve if the pump is a constant speed pump, or changing the motor speed with a variable speed drive. The former is only energy efficient if the higher flow operating point of the pump without throttling is to the right of the best efficiency point on the pump performance curve, and the throttling results in reducing the flow to a point closer to the best efficiency point on the pump curve. Otherwise, throttling the pump can result in using more energy than at the higher flow, as well as wasting energy because you end up using more energy than is needed. When the demand on the system fluctuates significantly, the pumping rate can be controlled automatically by varying the speed of the motor with a variable frequency drive (VFD), such that the pump output matches only what is needed to meet demands or the intended pumping conditions. The pump’s flow rate then increases or decreases based upon the affinity laws and the controlled speed of the motor. This way lower pumping rates can be achieved, which may result in lower efficiency than those at full motor speed; however, the energy consumption is still lower because the energy requirements to pump lower flows at lower heads are lower.
Estudio de Caso – Perú
Planificación local, impacto global – Como las Empresas de Agua y Saneamiento del Perú enfrentan el Cambio Climático
¿Cómo asegurar la prestación de los servicios de agua y saneamiento en un contexto de cambio climático? Los Planes de Mitigación y Adaptación al Cambio Climático (PMACC) son una herramienta para abordar este desafío. Permiten identificar las principales fuentes de emisiones de carbono y los mayores riesgos asociados al clima a lo largo del ciclo urbano del agua; así como las oportunidades de las empresas prestadoras de servicios de agua y saneamiento (EPS) para impulsar un cambio positivo hacia la neutralidad y adaptación climática. Siguiendo una metodología estandarizada y con la ayuda de herramientas virtuales, el proceso de planificación es más rápido y genera un reporte para informar a los tomadores de decisión. Gracias a esta buena planificación, algunas empresas del Perú han empezado a buscar soluciones prácticas para reducir sus emisiones de carbono, como es el caso de las empresas de agua de Cusco y Ayacucho. La iniciativa PMACC fue desarrollada e implementada en colaboración entre WaCCliM (responsable de la parte de mitigación) y PROAGUA II.
Case Study – Peru
Planning locally, impacting globally – How Water and Wastewater Utilities in Peru are Facing Climate Change
How to ensure water and sanitation services delivery under a climate change context? The climate change mitigation and adaptation plans (PMACC; Planes de Mitigación y Adaptación al Cambio Climático) are tools to address this challenge. PMACC identify main carbon emissions sources and higher climate risks throughout the urban water cycle, along with water utilities’ opportunities to boost a positive change towards climate neutrality and adaptation. Following a standardised methodology and supported by web-based tools, the planning process becomes quicker and generates a report to informing decision-makers. This planning approach enabled some water utilities in Peru to start searching for practical carbon emissions reduction solutions, such as water utilities in Cusco and Ayacucho. The PMACC initiative was developed and implemented collaboratively between WaCCliM (responsible for mitigation) and PROAGUA II.