Variable speed pumping: A guide to successful applications.

Pumping systems account for nearly 20% of the world’s energy used by electric motors and 25% to 50% of the total electrical energy usage in certain industrial
facilities. Significant opportunities exist to reduce pumping system energy consumption through smart design, retrofitting, and operating practices. In particular,
the many pumping applications with variable-duty requirements offer great potential for savings. The savings often go well beyond energy, and may include improved performance, improved reliability, and reduced life cycle costs. Most existing systems requiring flow control make use of bypass lines, throttling valves, or pump speed adjustments. The most efficient of these is pump speed control. When a pump’s speed is reduced, less energy is imparted to the fluid and less energy needs to be throttled or bypassed. Speed can be controlled in a number of ways, with the most popular type of variable speed drive (VSD) being the variable frequency drive (VFD). Pump speed adjustment is not appropriate for all pumping systems, however. This overview provides highlights from Variable Speed Pumping — A Guide To Successful Applications, which has been developed by Europump and the Hydraulic Institute as a primer and tool to assist plant owners and designers as well as pump, motor, and drive manufacturers and distributors. When the requirements of a pump and system are understood, the user can consult this guide to help determine whether variable speed pumping is the correct choice. The guide is applicable for both new and retrofit installations and contains flowcharts to assist in the selection process.

Energy efficiency: benefits of variable speed control in pumps, fans and compressors

A large proportion of the electricity produced around the world is used to raise, move or pressurize liquids and gases with machines such as pumps, fans and compressors.
Given the increasing importance of controlling energy consumption, special attention must be paid to the way these machines are operated and the energy savings that can be achieved through variable speed control. These different aspects will be dealt with in this Cahier Technique publication, both from the qualitative and quantitative standpoint. Variable speed drives are among the front-ranking solutions proposed by Schneider Electric to increase Energy efficiency.

A visual tool to calculate optimal control strategy for non-identical pumps working in parallel, taking motor and VSD efficiencies into account

A simple graphical tool was developed, that finds the optimal combination of pumps and their rotational speeds for all possible working points for a pump battery. The tool was integrated into EPANET as well as EPA SWMM simulation packages. The tool allows us to analyse and optimize operation non-identical parallel pumps with different minimum and maximum frequencies for all possible working points. Pump characteristics and efficiency curves can be given in tabular format or as analytical functions of flow. Degradation of pump efficiency at lower rotational speed is taken into account, as well as motor and variable speed drive efficiencies at partial loads. The optimal solution provided by the tool was compared to measurements in two case studies. Our case studies showed 6.1–8.5% reduction in energy usage using the optimal parallel pumping control strategy compared to the currently used strategy, where all running pumps have the same frequency

Assess your utility’s carbon footprint
X Close

Assess your utility’s energy performance and GHG emissions

Assess my system